Уводзіны
Дадзены набор даных D = { ( X 1 , Y 2 ) , … , ( X N , Y N ) } D = \{(X_{1}, Y_{2}), \dots,(X_{N}, Y_{N})\} D = {( X 1 , Y 2 ) , … , ( X N , Y N )} , напрыклад X i X_{i} X i і Y i Y_{i } Y i бесперапынныя. Мэта "Лінейнай рэгрэсіі" - знайсці найлепшую лінію, якая адпавядае гэтым дадзеным.
Іншымі словамі, мы хочам стварыць мадэль:
y ^ = a ∗ 0 + a ∗ 1. x ∗ 1 + ⋯ + a ∗ p . x _ p \hat{y} = a*{0} + a*{1}.x*{1} + \dots + a*{p}.x\_{p} y ^ = a ∗ 0 + a ∗ 1 . x ∗ 1 + ⋯ + a ∗ p . x _ p
дзе p p p — колькасць вымярэнняў зменнай X X X .
У гэтым артыкуле мы ўбачым, як вырашыць гэтую праблему ў трох сцэнарах:
Калі X аднамерны, г.зн. p = 1 p=1 p = 1 .
Калі X шматмерны, г.зн. p > 1 p>1 p > 1 .
Выкарыстанне градыентнага спуску.
X X X - аднамерны (звычайны найменшы квадрат)
Мадэль, якую мы хочам стварыць, мае форму:
y ^ = a ∗ 0 + a ∗ 1. x \hat{y} = a*{0} + a*{1}.x y ^ = a ∗ 0 + a ∗ 1 . x
Памятайце, што мэта лінейнай рэгрэсіі - знайсці лінію, якая найбольш адпавядае дадзеным. Іншымі словамі, нам трэба мінімізаваць адлегласць паміж кропкамі дадзеных і лініяй.
( a ∗ 0 ^ , a ∗ 1 ^ ) = argmin ( a ∗ 0 , a ∗ 1 ) ∑ ∗ i = 1 N ( y ∗ i − y ∗ i ^ ) 2 (\hat{a*{0}}, \hat{a*{1}}) = \underset{(a*{0}, a*{1})}{\operatorname{argmin}} \sum\limits*{i=1}^{N} (y*{i} - \hat{y*{i}})^2 ( a ∗ 0 ^ , a ∗ 1 ^ ) = ( a ∗ 0 , a ∗ 1 ) argmin ∑ ∗ i = 1 N ( y ∗ i − y ∗ i ^ ) 2
= argmin ( a ∗ 0 , a ∗ 1 ) ∑ ∗ i = 1 N ( y ∗ i − ( a ∗ 0 + a ∗ 1. x ∗ i ) ) 2 = \underset{(a*{0}, a*{1})}{\operatorname{argmin}} \sum\limits*{i=1}^{N} (y*{i} - (a*{0} + a*{1}.x*{i}))^2 = ( a ∗ 0 , a ∗ 1 ) argmin ∑ ∗ i = 1 N ( y ∗ i − ( a ∗ 0 + a ∗ 1 . x ∗ i ) ) 2
Давайце паставім:
L = ∑ ∗ i = 1 N ( y ∗ i − ( a ∗ 0 + a ∗ 1. x _ i ) ) 2 L = \sum\limits*{i=1}^{N} (y*{i} - (a*{0} + a*{1}.x\_{i}))^2 L = ∑ ∗ i = 1 N ( y ∗ i − ( a ∗ 0 + a ∗ 1 . x _ i ) ) 2
Каб знайсці мінімум, трэба рашыць наступныя ўраўненні:
{ ∂ L ∂ a 0 = 0 ∂ L ∂ a 1 = 0 \begin{cases}
\frac{\partial L}{\partial a_{0}} = 0\\
\frac{\partial L}{\partial a_{1}} = 0
\end{cases} { ∂ a 0 ∂ L = 0 ∂ a 1 ∂ L = 0
{ ∑ i = 1 N − 2 ( y i − ( a 0 + a 1 . x i ) ) = 0 ∑ i = 1 N − 2 x i ( y i − ( a 0 + a 1 . x i ) ) = 0 \begin{cases}
\sum\limits_{i=1}^{N} -2(y_{i} - (a_{0} + a_{1}.x_{i})) = 0\\
\sum\limits_{i=1}^{N} -2x_{i}(y_{i} - (a_{0} + a_{1}.x_{i})) = 0
\end{cases} ⎩ ⎨ ⎧ i = 1 ∑ N − 2 ( y i − ( a 0 + a 1 . x i )) = 0 i = 1 ∑ N − 2 x i ( y i − ( a 0 + a 1 . x i )) = 0
Мы пачынаем з распрацоўкі першага ўраўнення:
∑ i = 1 N y i − ∑ i = 1 N a 0 + ∑ i = 1 N a 1 . x i = 0 \sum\limits_{i=1}^{N} y_{i} - \sum\limits_{i=1}^{N}a_{0} + \sum\limits_{i=1}^{N} a_{1}.x_{i} = 0\\ i = 1 ∑ N y i − i = 1 ∑ N a 0 + i = 1 ∑ N a 1 . x i = 0
∑ i = 1 N y i − N a 0 + ∑ i = 1 N a 1 . x i = 0 \sum\limits_{i=1}^{N} y_{i} - Na_{0} + \sum\limits_{i=1}^{N} a_{1}.x_{i} = 0\\ i = 1 ∑ N y i − N a 0 + i = 1 ∑ N a 1 . x i = 0
a 0 = ∑ i = 1 N y i N − ∑ i = 1 N x i N a 1 a_{0} = \frac{\sum\limits_{i=1}^{N} y_{i}}{N} - \frac{\sum\limits_{i=1}^{N} x_{i}}{N}a_{1} a 0 = N i = 1 ∑ N y i − N i = 1 ∑ N x i a 1
a 0 = Y − X a 1 a_{0} = Y - Xa_{1} a 0 = Y − X a 1
Падстаўляем у другое ўраўненне:
∑ i = 1 N x i ( y i − Y + X a 1 − a 1 x i ) = 0 \sum\limits_{i=1}^{N} x_{i}(y_{i} - Y + Xa_{1} - a_{1}x_{i}) = 0 i = 1 ∑ N x i ( y i − Y + X a 1 − a 1 x i ) = 0
∑ i = 1 N ( y i − Y ) + a 1 ( X − x i ) = 0 \sum\limits_{i=1}^{N} (y_{i} - Y) + a_{1}(X - x_{i}) = 0 i = 1 ∑ N ( y i − Y ) + a 1 ( X − x i ) = 0
∑ i = 1 N ( y i − Y ) − ∑ i = 1 N a 1 ( x i − X ) = 0 \sum\limits_{i=1}^{N} (y_{i} - Y) - \sum\limits_{i=1}^{N}a_{1}(x_{i} - X) = 0 i = 1 ∑ N ( y i − Y ) − i = 1 ∑ N a 1 ( x i − X ) = 0
a 1 = ∑ i = 1 N ( y i − Y ) ∑ i = 1 N ( x i − X ) = ∑ i = 1 N ( y i − Y ) ( x i − X ) ∑ i = 1 N ( x i − X ) 2 = C O V ( X , Y ) V A R ( X ) a_{1} = \frac{\sum\limits_{i=1}^{N} (y_{i} - Y)}{\sum\limits_{i=1}^{N}(x_{i} - X)} =
\frac{\sum\limits_{i=1}^{N} (y_{i} - Y)(x_{i} - X)}{\sum\limits_{i=1}^{N}(x_{i} - X)^2} =
\frac{COV(X, Y)}{VAR(X)} a 1 = i = 1 ∑ N ( x i − X ) i = 1 ∑ N ( y i − Y ) = i = 1 ∑ N ( x i − X ) 2 i = 1 ∑ N ( y i − Y ) ( x i − X ) = V A R ( X ) CO V ( X , Y )
Мы замяняем назад у a 0 a_{0} a 0 :
{ a 0 = Y − X C O V ( X , Y ) V A R ( X ) a 1 = C O V ( X , Y ) V A R ( X ) \begin{cases}
a_{0} = Y - X\frac{COV(X, Y)}{VAR(X)}\\
a_{1} = \frac{COV(X, Y)}{VAR(X)}
\end{cases} { a 0 = Y − X V A R ( X ) CO V ( X , Y ) a 1 = V A R ( X ) CO V ( X , Y )
X X X з'яўляецца шматмерным (звычайны найменшы квадрат)
У гэтым выпадку X i X_{i} X i больш не з'яўляецца сапраўдным лікам, а замест гэтага гэта вектар памеру p p p :
X ∗ i = ( X ∗ i 1 , X ∗ i 2 , … , X ∗ i p ) X*{i} = (X*{i1},X*{i2},\dots,X*{ip}) X ∗ i = ( X ∗ i 1 , X ∗ i 2 , … , X ∗ i p )
Такім чынам, мадэль запісваецца наступным чынам:
y ^ = a ∗ 0 + a ∗ 1 x ∗ 1 + a ∗ 2 x ∗ 2 + ⋯ + a ∗ p x _ p \hat{y} = a*{0} + a*{1}x*{1} + a*{2}x*{2} + \dots + a*{p}x\_{p} y ^ = a ∗ 0 + a ∗ 1 x ∗ 1 + a ∗ 2 x ∗ 2 + ⋯ + a ∗ p x _ p
або, гэта можа быць запісана ў фармаце матрыцы:
Y ^ = X . W \hat{Y} = X.W Y ^ = X . W
дзе:
Y Y Y мае форму ( N , 1 ) (N, 1) ( N , 1 ) .
X X X мае форму ( N , p ) (N, p) ( N , p ) .
W W W мае форму ( p , 1 ) (p, 1) ( p , 1 ) : гэта вектар параметраў ( w 1 , w 2 , … , w p ) (w_{1}, w_{2}, \dots, w_{p}) ( w 1 , w 2 , … , w p ) .
Як і ў першым выпадку, мы імкнемся мінімізаваць наступную колькасць:
W ^ = argmin W ∑ ∗ i = 1 N ( y ∗ i − y _ i ^ ) 2 \hat{W} = \underset{W}{\operatorname{argmin}} \sum\limits*{i=1}^{N} (y*{i} - \hat{y\_{i}})^2 W ^ = W argmin ∑ ∗ i = 1 N ( y ∗ i − y _ i ^ ) 2
Зноў паставім:
L = ∑ ∗ i = 1 N ( y ∗ i − y _ i ^ ) 2 L = \sum\limits*{i=1}^{N} (y*{i} - \hat{y\_{i}})^2 L = ∑ ∗ i = 1 N ( y ∗ i − y _ i ^ ) 2
= ( Y − X W ) T ( Y − X W ) = (Y-XW)^{T}(Y-XW) = ( Y − X W ) T ( Y − X W )
= Y T Y − Y T X W − W T X T Y + W T X T X W = Y^TY-Y^TXW-W^TX^TY+W^TX^TXW = Y T Y − Y T X W − W T X T Y + W T X T X W
= Y T Y − 2 W T X T Y + W T X T X W = Y^TY-2W^TX^TY+W^TX^TXW = Y T Y − 2 W T X T Y + W T X T X W
Паколькі мы хочам мінімізаваць L L L адносна W W W , мы можам ігнараваць першы член "Y T Y Y^TY Y T Y ", таму што ён не залежыць ад W W W , і давайце рашым наступнае ўраўненне:
∂ ( − 2 W T X T Y + W T X T X W ) ∂ W = 0 \frac{\partial (-2W^TX^TY+W^TX^TXW)}{\partial W} = 0 ∂ W ∂ ( − 2 W T X T Y + W T X T X W ) = 0
− 2 X T Y + 2 X T X W ^ = 0 -2X^TY+2X^TX\hat{W} = 0 − 2 X T Y + 2 X T X W ^ = 0
W ^ = ( X T X ) − 1 X T Y \hat{W} = (X^TX)^{-1}X^TY W ^ = ( X T X ) − 1 X T Y
Выкарыстанне градыентнага спуску
Вось фармулёўка алгарытму градыентнага спуску:
w ∗ n + 1 = w ∗ n − l r × ∂ f ∂ w _ n w*{n+1} = w*{n} - lr \times \frac{\partial f}{\partial w\_{n}} w ∗ n + 1 = w ∗ n − l r × ∂ w _ n ∂ f
Цяпер усё, што нам трэба зрабіць, гэта прымяніць яго да двух параметраў a 0 a_{0} a 0 і a 1 a_{1} a 1 (у выпадку адной зменнай X X X ):
{ a 0 ( n + 1 ) = a 0 ( n ) − l r × ∂ L ∂ a 0 a 1 ( n + 1 ) = a 1 ( n ) − l r × ∂ L ∂ a 1 \begin{cases}
a_{0}^{(n+1)} = a_{0}^{(n)} - lr \times \frac{\partial L}{\partial a_{0}}\\
a_{1}^{(n+1)} = a_{1}^{(n)} - lr \times \frac{\partial L}{\partial a_{1}}
\end{cases} { a 0 ( n + 1 ) = a 0 ( n ) − l r × ∂ a 0 ∂ L a 1 ( n + 1 ) = a 1 ( n ) − l r × ∂ a 1 ∂ L
і мы ведаем, што:
{ ∂ L ∂ a 0 = ∑ i = 1 N − 2 ( y i − ( a 0 + a 1 . x i ) ) ∂ L ∂ a 1 = ∑ i = 1 N − 2 x i ( y i − ( a 0 + a 1 . x i ) ) \begin{cases}
\frac{\partial L}{\partial a_{0}} = \sum\limits_{i=1}^{N} -2(y_{i} - (a_{0} + a_{1}.x_{i}))\\
\frac{\partial L}{\partial a_{1}} = \sum\limits_{i=1}^{N} -2x_{i}(y_{i} - (a_{0} + a_{1}.x_{i}))
\end{cases} ⎩ ⎨ ⎧ ∂ a 0 ∂ L = i = 1 ∑ N − 2 ( y i − ( a 0 + a 1 . x i )) ∂ a 1 ∂ L = i = 1 ∑ N − 2 x i ( y i − ( a 0 + a 1 . x i ))
Па замене:
{ a 0 ( n + 1 ) = a 0 ( n ) + 2 × l r × ∑ i = 1 N ( y i − ( a 0 ( n ) + a 1 ( n ) . x i ) ) a 1 ( n + 1 ) = a 1 ( n ) + 2 × l r × ∑ i = 1 N x i ( y i − ( a 0 ( n ) + a 1 ( n ) . x i ) ) \begin{cases}
a_{0}^{(n+1)} = a_{0}^{(n)} + 2 \times lr \times \sum\limits_{i=1}^{N} (y_{i} - (a_{0}^{(n)} + a_{1}^{(n)}.x_{i}))\\
a_{1}^{(n+1)} = a_{1}^{(n)} + 2 \times lr \times \sum\limits_{i=1}^{N} x_{i}(y_{i} - (a_{0}^{(n)} + a_{1}^{(n)}.x_{i}))
\end{cases} ⎩ ⎨ ⎧ a 0 ( n + 1 ) = a 0 ( n ) + 2 × l r × i = 1 ∑ N ( y i − ( a 0 ( n ) + a 1 ( n ) . x i )) a 1 ( n + 1 ) = a 1 ( n ) + 2 × l r × i = 1 ∑ N x i ( y i − ( a 0 ( n ) + a 1 ( n ) . x i ))
Віктарына
Якая формула вектара аптымальных параметраў у выпадку шматмернай лінейнай рэгрэсіі:
C O V ( X , Y ) V A R ( Y ) \frac{COV(X, Y)}{VAR(Y)} V A R ( Y ) CO V ( X , Y )
C O V ( X , Y ) V A R ( X ) \frac{COV(X, Y)}{VAR(X)} V A R ( X ) CO V ( X , Y )
( X T X ) − 1 X T Y (X^TX)^{-1}X^TY ( X T X ) − 1 X T Y "правільна"
Чаму мы ставім вытворную роўнай 0?
— Знайсці экстрэмум. "правільна"
Мінімізаваць вытворную.
Каб захаваць толькі сапраўдную частку вытворнай.
Якая мэта лінейнай рэгрэсіі?
Знайсці прамую, якая праходзіць праз усе пункты.
Каб знайсці радок, які лепш за ўсё апісвае дадзеныя."правільны"
Каб знайсці лінію, якая найлепшым чынам падзяляе дадзеныя.