Uvod
Podan je nabor podatkov D = { ( X 1 , Y 2 ) , … , ( X N , Y N ) } D = \{(X_{1}, Y_{2}), \dots,(X_{N}, Y_{N})\} D = {( X 1 , Y 2 ) , … , ( X N , Y N )} , kot sta X i X_{i} X i in Y i Y_{i } Y i sta zvezna. Cilj "linearne regresije" je najti najboljšo črto, ki ustreza tem podatkom.
Z drugimi besedami, želimo ustvariti model:
y ^ = a ∗ 0 + a ∗ 1. x ∗ 1 + ⋯ + a ∗ p . x _ p \hat{y} = a*{0} + a*{1}.x*{1} + \dots + a*{p}.x\_{p} y ^ = a ∗ 0 + a ∗ 1 . x ∗ 1 + ⋯ + a ∗ p . x _ p
kjer je p p p število dimenzij spremenljivke X X X .
V tem članku bomo videli, kako rešiti to težavo v treh scenarijih:
Ko je X enodimenzionalen, tj. p = 1 p=1 p = 1 .
Ko je X večdimenzionalen, tj. p > 1 p>1 p > 1 .
Uporaba gradientnega spusta.
X X X je enodimenzionalen (običajni najmanjši kvadrat)
Model, ki ga želimo ustvariti, ima obliko:
y ^ = a ∗ 0 + a ∗ 1. x \hat{y} = a*{0} + a*{1}.x y ^ = a ∗ 0 + a ∗ 1 . x
Ne pozabite, da je cilj linearne regresije najti črto, ki najbolje ustreza podatkom. Z drugimi besedami, zmanjšati moramo razdaljo med podatkovnimi točkami in črto.
( a ∗ 0 ^ , a ∗ 1 ^ ) = argmin ( a ∗ 0 , a ∗ 1 ) ∑ ∗ i = 1 N ( y ∗ i − y ∗ i ^ ) 2 (\hat{a*{0}}, \hat{a*{1}}) = \underset{(a*{0}, a*{1})}{\operatorname{argmin}} \sum\limits*{i=1}^{N} (y*{i} - \hat{y*{i}})^2 ( a ∗ 0 ^ , a ∗ 1 ^ ) = ( a ∗ 0 , a ∗ 1 ) argmin ∑ ∗ i = 1 N ( y ∗ i − y ∗ i ^ ) 2
= argmin ( a ∗ 0 , a ∗ 1 ) ∑ ∗ i = 1 N ( y ∗ i − ( a ∗ 0 + a ∗ 1. x ∗ i ) ) 2 = \underset{(a*{0}, a*{1})}{\operatorname{argmin}} \sum\limits*{i=1}^{N} (y*{i} - (a*{0} + a*{1}.x*{i}))^2 = ( a ∗ 0 , a ∗ 1 ) argmin ∑ ∗ i = 1 N ( y ∗ i − ( a ∗ 0 + a ∗ 1 . x ∗ i ) ) 2
Postavimo:
L = ∑ ∗ i = 1 N ( y ∗ i − ( a ∗ 0 + a ∗ 1. x _ i ) ) 2 L = \sum\limits*{i=1}^{N} (y*{i} - (a*{0} + a*{1}.x\_{i}))^2 L = ∑ ∗ i = 1 N ( y ∗ i − ( a ∗ 0 + a ∗ 1 . x _ i ) ) 2
Da bi našli minimum, moramo rešiti naslednje enačbe:
{ ∂ L ∂ a 0 = 0 ∂ L ∂ a 1 = 0 \begin{cases}
\frac{\partial L}{\partial a_{0}} = 0\\
\frac{\partial L}{\partial a_{1}} = 0
\end{cases} { ∂ a 0 ∂ L = 0 ∂ a 1 ∂ L = 0
{ ∑ i = 1 N − 2 ( y i − ( a 0 + a 1 . x i ) ) = 0 ∑ i = 1 N − 2 x i ( y i − ( a 0 + a 1 . x i ) ) = 0 \begin{cases}
\sum\limits_{i=1}^{N} -2(y_{i} - (a_{0} + a_{1}.x_{i})) = 0\\
\sum\limits_{i=1}^{N} -2x_{i}(y_{i} - (a_{0} + a_{1}.x_{i})) = 0
\end{cases} ⎩ ⎨ ⎧ i = 1 ∑ N − 2 ( y i − ( a 0 + a 1 . x i )) = 0 i = 1 ∑ N − 2 x i ( y i − ( a 0 + a 1 . x i )) = 0
Začnemo z razvojem prve enačbe:
∑ i = 1 N y i − ∑ i = 1 N a 0 + ∑ i = 1 N a 1 . x i = 0 \sum\limits_{i=1}^{N} y_{i} - \sum\limits_{i=1}^{N}a_{0} + \sum\limits_{i=1}^{N} a_{1}.x_{i} = 0\\ i = 1 ∑ N y i − i = 1 ∑ N a 0 + i = 1 ∑ N a 1 . x i = 0
∑ i = 1 N y i − N a 0 + ∑ i = 1 N a 1 . x i = 0 \sum\limits_{i=1}^{N} y_{i} - Na_{0} + \sum\limits_{i=1}^{N} a_{1}.x_{i} = 0\\ i = 1 ∑ N y i − N a 0 + i = 1 ∑ N a 1 . x i = 0
a 0 = ∑ i = 1 N y i N − ∑ i = 1 N x i N a 1 a_{0} = \frac{\sum\limits_{i=1}^{N} y_{i}}{N} - \frac{\sum\limits_{i=1}^{N} x_{i}}{N}a_{1} a 0 = N i = 1 ∑ N y i − N i = 1 ∑ N x i a 1
a 0 = Y − X a 1 a_{0} = Y - Xa_{1} a 0 = Y − X a 1
V drugo enačbo nadomestimo:
∑ i = 1 N x i ( y i − Y + X a 1 − a 1 x i ) = 0 \sum\limits_{i=1}^{N} x_{i}(y_{i} - Y + Xa_{1} - a_{1}x_{i}) = 0 i = 1 ∑ N x i ( y i − Y + X a 1 − a 1 x i ) = 0
∑ i = 1 N ( y i − Y ) + a 1 ( X − x i ) = 0 \sum\limits_{i=1}^{N} (y_{i} - Y) + a_{1}(X - x_{i}) = 0 i = 1 ∑ N ( y i − Y ) + a 1 ( X − x i ) = 0
∑ i = 1 N ( y i − Y ) − ∑ i = 1 N a 1 ( x i − X ) = 0 \sum\limits_{i=1}^{N} (y_{i} - Y) - \sum\limits_{i=1}^{N}a_{1}(x_{i} - X) = 0 i = 1 ∑ N ( y i − Y ) − i = 1 ∑ N a 1 ( x i − X ) = 0
a 1 = ∑ i = 1 N ( y i − Y ) ∑ i = 1 N ( x i − X ) = ∑ i = 1 N ( y i − Y ) ( x i − X ) ∑ i = 1 N ( x i − X ) 2 = C O V ( X , Y ) V A R ( X ) a_{1} = \frac{\sum\limits_{i=1}^{N} (y_{i} - Y)}{\sum\limits_{i=1}^{N}(x_{i} - X)} =
\frac{\sum\limits_{i=1}^{N} (y_{i} - Y)(x_{i} - X)}{\sum\limits_{i=1}^{N}(x_{i} - X)^2} =
\frac{COV(X, Y)}{VAR(X)} a 1 = i = 1 ∑ N ( x i − X ) i = 1 ∑ N ( y i − Y ) = i = 1 ∑ N ( x i − X ) 2 i = 1 ∑ N ( y i − Y ) ( x i − X ) = V A R ( X ) CO V ( X , Y )
Nadomestimo nazaj v a 0 a_{0} a 0 :
{ a 0 = Y − X C O V ( X , Y ) V A R ( X ) a 1 = C O V ( X , Y ) V A R ( X ) \begin{cases}
a_{0} = Y - X\frac{COV(X, Y)}{VAR(X)}\\
a_{1} = \frac{COV(X, Y)}{VAR(X)}
\end{cases} { a 0 = Y − X V A R ( X ) CO V ( X , Y ) a 1 = V A R ( X ) CO V ( X , Y )
X X X je večdimenzionalen (običajni najmanjši kvadrat)
V tem primeru X i X_{i} X i ni več realno število, temveč je vektor velikosti p p p :
X ∗ i = ( X ∗ i 1 , X ∗ i 2 , … , X ∗ i p ) X*{i} = (X*{i1},X*{i2},\dots,X*{ip}) X ∗ i = ( X ∗ i 1 , X ∗ i 2 , … , X ∗ i p )
Torej, model je zapisan takole:
y ^ = a ∗ 0 + a ∗ 1 x ∗ 1 + a ∗ 2 x ∗ 2 + ⋯ + a ∗ p x _ p \hat{y} = a*{0} + a*{1}x*{1} + a*{2}x*{2} + \dots + a*{p}x\_{p} y ^ = a ∗ 0 + a ∗ 1 x ∗ 1 + a ∗ 2 x ∗ 2 + ⋯ + a ∗ p x _ p
ali pa se lahko zapiše v matrični obliki:
Y ^ = X . W \hat{Y} = X.W Y ^ = X . W
kje:
Y Y Y ima obliko ( N , 1 ) (N, 1) ( N , 1 ) .
X X X ima obliko ( N , p ) (N, p) ( N , p ) .
W W W ima obliko ( p , 1 ) (p, 1) ( p , 1 ) : to je vektor parametrov ( w 1 , w 2 , … , w p ) (w_{1}, w_{2}, \dots, w_{p}) ( w 1 , w 2 , … , w p ) .
Podobno kot v prvem primeru želimo zmanjšati naslednjo količino:
W ^ = argmin W ∑ ∗ i = 1 N ( y ∗ i − y _ i ^ ) 2 \hat{W} = \underset{W}{\operatorname{argmin}} \sum\limits*{i=1}^{N} (y*{i} - \hat{y\_{i}})^2 W ^ = W argmin ∑ ∗ i = 1 N ( y ∗ i − y _ i ^ ) 2
Še enkrat postavimo:
L = ∑ ∗ i = 1 N ( y ∗ i − y _ i ^ ) 2 L = \sum\limits*{i=1}^{N} (y*{i} - \hat{y\_{i}})^2 L = ∑ ∗ i = 1 N ( y ∗ i − y _ i ^ ) 2
= ( Y − X W ) T ( Y − X W ) = (Y-XW)^{T}(Y-XW) = ( Y − X W ) T ( Y − X W )
= Y T Y − Y T X W − W T X T Y + W T X T X W = Y^TY-Y^TXW-W^TX^TY+W^TX^TXW = Y T Y − Y T X W − W T X T Y + W T X T X W
= Y T Y − 2 W T X T Y + W T X T X W = Y^TY-2W^TX^TY+W^TX^TXW = Y T Y − 2 W T X T Y + W T X T X W
Ker želimo minimizirati L L L glede na W W W , potem lahko zanemarimo prvi izraz "Y T Y Y^TY Y T Y ", ker je neodvisen od W W W in rešimo naslednjo enačbo:
∂ ( − 2 W T X T Y + W T X T X W ) ∂ W = 0 \frac{\partial (-2W^TX^TY+W^TX^TXW)}{\partial W} = 0 ∂ W ∂ ( − 2 W T X T Y + W T X T X W ) = 0
− 2 X T Y + 2 X T X W ^ = 0 -2X^TY+2X^TX\hat{W} = 0 − 2 X T Y + 2 X T X W ^ = 0
W ^ = ( X T X ) − 1 X T Y \hat{W} = (X^TX)^{-1}X^TY W ^ = ( X T X ) − 1 X T Y
Uporaba gradientnega spuščanja
Tukaj je formulacija algoritma gradientnega spuščanja:
w ∗ n + 1 = w ∗ n − l r × ∂ f ∂ w _ n w*{n+1} = w*{n} - lr \times \frac{\partial f}{\partial w\_{n}} w ∗ n + 1 = w ∗ n − l r × ∂ w _ n ∂ f
Zdaj ga moramo le uporabiti za dva parametra a 0 a_{0} a 0 in a 1 a_{1} a 1 (v primeru ene spremenljivke X X X ):
{ a 0 ( n + 1 ) = a 0 ( n ) − l r × ∂ L ∂ a 0 a 1 ( n + 1 ) = a 1 ( n ) − l r × ∂ L ∂ a 1 \begin{cases}
a_{0}^{(n+1)} = a_{0}^{(n)} - lr \times \frac{\partial L}{\partial a_{0}}\\
a_{1}^{(n+1)} = a_{1}^{(n)} - lr \times \frac{\partial L}{\partial a_{1}}
\end{cases} { a 0 ( n + 1 ) = a 0 ( n ) − l r × ∂ a 0 ∂ L a 1 ( n + 1 ) = a 1 ( n ) − l r × ∂ a 1 ∂ L
in vemo, da:
{ ∂ L ∂ a 0 = ∑ i = 1 N − 2 ( y i − ( a 0 + a 1 . x i ) ) ∂ L ∂ a 1 = ∑ i = 1 N − 2 x i ( y i − ( a 0 + a 1 . x i ) ) \begin{cases}
\frac{\partial L}{\partial a_{0}} = \sum\limits_{i=1}^{N} -2(y_{i} - (a_{0} + a_{1}.x_{i}))\\
\frac{\partial L}{\partial a_{1}} = \sum\limits_{i=1}^{N} -2x_{i}(y_{i} - (a_{0} + a_{1}.x_{i}))
\end{cases} ⎩ ⎨ ⎧ ∂ a 0 ∂ L = i = 1 ∑ N − 2 ( y i − ( a 0 + a 1 . x i )) ∂ a 1 ∂ L = i = 1 ∑ N − 2 x i ( y i − ( a 0 + a 1 . x i ))
Z zamenjavo:
{ a 0 ( n + 1 ) = a 0 ( n ) + 2 × l r × ∑ i = 1 N ( y i − ( a 0 ( n ) + a 1 ( n ) . x i ) ) a 1 ( n + 1 ) = a 1 ( n ) + 2 × l r × ∑ i = 1 N x i ( y i − ( a 0 ( n ) + a 1 ( n ) . x i ) ) \begin{cases}
a_{0}^{(n+1)} = a_{0}^{(n)} + 2 \times lr \times \sum\limits_{i=1}^{N} (y_{i} - (a_{0}^{(n)} + a_{1}^{(n)}.x_{i}))\\
a_{1}^{(n+1)} = a_{1}^{(n)} + 2 \times lr \times \sum\limits_{i=1}^{N} x_{i}(y_{i} - (a_{0}^{(n)} + a_{1}^{(n)}.x_{i}))
\end{cases} ⎩ ⎨ ⎧ a 0 ( n + 1 ) = a 0 ( n ) + 2 × l r × i = 1 ∑ N ( y i − ( a 0 ( n ) + a 1 ( n ) . x i )) a 1 ( n + 1 ) = a 1 ( n ) + 2 × l r × i = 1 ∑ N x i ( y i − ( a 0 ( n ) + a 1 ( n ) . x i ))
Kviz
Kakšna je formula vektorja optimalnih parametrov v primeru večdimenzionalne linearne regresije:
C O V ( X , Y ) V A R ( Y ) \frac{COV(X, Y)}{VAR(Y)} V A R ( Y ) CO V ( X , Y )
C O V ( X , Y ) V A R ( X ) \frac{COV(X, Y)}{VAR(X)} V A R ( X ) CO V ( X , Y )
( X T X ) − 1 X T Y (X^TX)^{-1}X^TY ( X T X ) − 1 X T Y "pravilno"
Zakaj postavimo izpeljanko na 0?
Najti ekstrem. "pravilno"
Minimizirati izpeljanko.
Ohraniti samo realni del izpeljanke.
Kaj je cilj linearne regresije?
Poiskati črto, ki poteka mimo vseh točk.
Najti vrstico, ki najbolje opisuje podatke."pravilno"
Najti črto, ki najbolje ločuje podatke.