Lineárna regresia
Aktualizované na July 12, 2024 4 minúty čítania

Úvod
Daná množina údajov $D = {(X_{1}, Y_{2}), \dots,(X_{N}, Y_{N})}$, ako napríklad $X_{i}$ a $Y_{i }$ sú spojité. Cieľom “lineárnej regresie” je nájsť najlepšiu čiaru, ktorá vyhovuje týmto údajom.
Inými slovami, chceme vytvoriť model:
$$ \hat{y} = a*{0} + a*{1}.x*{1} + \dots + a*{p}.x_{p} $$
kde $p$ je počet rozmerov premennej $X$.
V tomto článku uvidíme, ako tento problém vyriešiť v troch scenároch:
-
Keď je X jednorozmerné, t.j. $p=1$.
-
Keď je X viacrozmerné, t. j. $p>1$.
-
Použitie gradientového zostupu.
$X$ je jednorozmerný (obyčajný najmenší štvorec)
Model, ktorý chceme vytvoriť, má tvar:
$$ \hat{y} = a*{0} + a*{1}.x $$
Pamätajte, že cieľom lineárnej regresie je nájsť čiaru, ktorá najlepšie zodpovedá údajom. Inými slovami, musíme minimalizovať vzdialenosť medzi dátovými bodmi a čiarou.
$$ (\hat{a*{0}}, \hat{a*{1}}) = \underset{(a*{0}, a*{1})}{\operatorname{argmin}} \sum\limits*{i=1}^{N} (y*{i} - \hat{y*{i}})^2 $$
$$ = \underset{(a*{0}, a*{1})}{\operatorname{argmin}} \sum\limits*{i=1}^{N} (y*{i} - (a*{0} + a*{1}.x*{i}))^2 $$
Dajme:
$$ L = \sum\limits*{i=1}^{N} (y*{i} - (a*{0} + a*{1}.x_{i}))^2 $$
Aby sme našli minimum, musíme vyriešiť nasledujúce rovnice:
$$ \begin{cases} \frac{\partial L}{\partial a_{0}} = 0\ \frac{\partial L}{\partial a_{1}} = 0 \end{cases} $$
$$ \begin{cases} \sum\limits_{i=1}^{N} -2(y_{i} - (a_{0} + a_{1}.x_{i})) = 0\ \sum\limits_{i=1}^{N} -2x_{i}(y_{i} - (a_{0} + a_{1}.x_{i})) = 0 \end{cases} $$
Začneme vytvorením prvej rovnice:
$$ \sum\limits_{i=1}^{N} y_{i} - \sum\limits_{i=1}^{N}a_{0} + \sum\limits_{i=1}^{N} a_{1}.x_{i} = 0\ $$
$$ \sum\limits_{i=1}^{N} y_{i} - Na_{0} + \sum\limits_{i=1}^{N} a_{1}.x_{i} = 0\ $$
$$ a_{0} = \frac{\sum\limits_{i=1}^{N} y_{i}}{N} - \frac{\sum\limits_{i=1}^{N} x_{i}}{N}a_{1} $$
$$ a_{0} = Y - Xa_{1} $$
Do druhej rovnice dosadíme:
$$ \sum\limits_{i=1}^{N} x_{i}(y_{i} - Y + Xa_{1} - a_{1}x_{i}) = 0 $$
$$ \sum\limits_{i=1}^{N} (y_{i} - Y) + a_{1}(X - x_{i}) = 0 $$
$$ \sum\limits_{i=1}^{N} (y_{i} - Y) - \sum\limits_{i=1}^{N}a_{1}(x_{i} - X) = 0 $$
$$ a_{1} = \frac{\sum\limits_{i=1}^{N} (y_{i} - Y)}{\sum\limits_{i=1}^{N}(x_{i} - X)} = \frac{\sum\limits_{i=1}^{N} (y_{i} - Y)(x_{i} - X)}{\sum\limits_{i=1}^{N}(x_{i} - X)^2} = \frac{COV(X, Y)}{VAR(X)} $$
Nahrádzame späť v $a_{0}$:
$$ \begin{cases} a_{0} = Y - X\frac{COV(X, Y)}{VAR(X)}\ a_{1} = \frac{COV(X, Y)}{VAR(X)} \end{cases} $$
$X$ je viacrozmerný (obyčajný najmenší štvorec)
V tomto prípade $X_{i}$ už nie je skutočné číslo, ale namiesto toho je to vektor veľkosti $p$:
$$ X*{i} = (X*{i1},X*{i2},\dots,X*{ip}) $$
Takže model je napísaný takto:
$$ \hat{y} = a*{0} + a*{1}x*{1} + a*{2}x*{2} + \dots + a*{p}x_{p} $$
alebo môže byť napísaný v maticovom formáte:
$$ \hat{Y} = X.W $$
kde:
-
$Y$ má tvar $(N, 1)$.
-
$X$ má tvar $(N, p)$.
-
$W$ má tvar $(p, 1)$: toto je vektor parametrov $(w_{1}, w_{2}, \dots, w_{p})$.
Podobne ako v prvom prípade sa snažíme minimalizovať nasledujúce množstvo:
$$ \hat{W} = \underset{W}{\operatorname{argmin}} \sum\limits*{i=1}^{N} (y*{i} - \hat{y_{i}})^2 $$
Opäť dajme:
$$ L = \sum\limits*{i=1}^{N} (y*{i} - \hat{y_{i}})^2 $$
$$ = (Y-XW)^{T}(Y-XW) $$
$$ = Y^TY-Y^TXW-W^TX^TY+W^TX^TXW $$
$$ = Y^TY-2W^TX^TY+W^TX^TXW $$
Keďže chceme minimalizovať $L$ vzhľadom na $W$, potom môžeme ignorovať prvý výraz “$Y^TY$”, pretože je nezávislý od $W$ a poďme vyriešiť nasledujúcu rovnicu:
$$ \frac{\partial (-2W^TX^TY+W^TX^TXW)}{\partial W} = 0 $$
$$ -2X^TY+2X^TX\hat{W} = 0 $$
$$ \hat{W} = (X^TX)^{-1}X^TY $$
Použitie gradientného klesania
Tu je formulácia algoritmu zostupu gradientu:
$$ w*{n+1} = w*{n} - lr \times \frac{\partial f}{\partial w_{n}} $$
Teraz všetko, čo musíme urobiť, je použiť ho na dva parametre $a_{0}$ a $a_{1}$ (v prípade jednej premennej $X$):
$$ \begin{cases} a_{0}^{(n+1)} = a_{0}^{(n)} - lr \times \frac{\partial L}{\partial a_{0}}\ a_{1}^{(n+1)} = a_{1}^{(n)} - lr \times \frac{\partial L}{\partial a_{1}} \end{cases} $$
a vieme, že:
$$ \begin{cases} \frac{\partial L}{\partial a_{0}} = \sum\limits_{i=1}^{N} -2(y_{i} - (a_{0} + a_{1}.x_{i}))\ \frac{\partial L}{\partial a_{1}} = \sum\limits_{i=1}^{N} -2x_{i}(y_{i} - (a_{0} + a_{1}.x_{i})) \end{cases} $$
Nahradením:
$$ \begin{cases} a_{0}^{(n+1)} = a_{0}^{(n)} + 2 \times lr \times \sum\limits_{i=1}^{N} (y_{i} - (a_{0}^{(n)} + a_{1}^{(n)}.x_{i}))\ a_{1}^{(n+1)} = a_{1}^{(n)} + 2 \times lr \times \sum\limits_{i=1}^{N} x_{i}(y_{i} - (a_{0}^{(n)} + a_{1}^{(n)}.x_{i})) \end{cases} $$
Kvíz
-
Aký je vzorec vektora optimálnych parametrov v prípade viacrozmernej lineárnej regresie:
-
$\frac{COV(X, Y)}{VAR(Y)}$
-
$\frac{COV(X, Y)}{VAR(X)}$
-
$(X^TX)^{-1}X^TY$ “správne”
-
Prečo dávame deriváciu na 0?
-
Aby som našiel extrém. “správne”
-
minimalizovať deriváciu.
-
Ponechať len skutočnú časť derivátu.
-
Čo je cieľom lineárnej regresie?
-
Ak chcete nájsť čiaru, ktorá prechádza všetkými bodmi.
-
Ak chcete nájsť riadok, ktorý najlepšie popisuje údaje.”správne”
-
Ak chcete nájsť čiaru, ktorá najlepšie oddeľuje údaje.