โครงการสุดท้าย
โปรเจ็กต์สุดท้ายเปิดโอกาสให้คุณนำความรู้หลักสูตรติวเข้มและทักษะที่ได้รับมาทดสอบในสภาพแวดล้อมที่ไดนามิกและลงมือปฏิบัติจริง เป็นโอกาสในการสร้างสิ่งที่เป็นจริง แสดงความสามารถทางเทคนิคของคุณ และพัฒนาโครงการที่จะเป็นส่วนสำคัญของแฟ้มผลงานระดับมืออาชีพของคุณ ช่วยให้คุณสามารถแสดงความคิดสร้างสรรค์และเน้นย้ำว่าคุณพัฒนาไปมากเพียงใดตลอดประสบการณ์การฝึกปฏิบัติ
นอกจากนี้ โปรเจ็กต์สุดท้ายยังได้รับการออกแบบเพื่อจำลองความท้าทายที่คุณจะพบในงานด้านเทคโนโลยีจริง ช่วยให้คุณสามารถแสดงทักษะในการแก้ปัญหาที่ซับซ้อน และเตรียมคุณให้พร้อมสำหรับความคาดหวังในอาชีพการงานในอนาคต
- การระบุปัญหา: เลือกปัญหาในชีวิตจริงที่เกี่ยวข้องกับอุตสาหกรรมหรือสาขาที่คุณสนใจ กำหนดขอบเขตและวัตถุประสงค์ของโครงการอย่างชัดเจน โดยเน้นว่าเทคนิคการเรียนรู้เชิงลึกขั้นสูงสามารถปรับปรุงโซลูชันได้อย่างไร
- การรวบรวมข้อมูลและการประมวลผลล่วงหน้า: รวบรวมข้อมูลจากแหล่งที่มาต่างๆ ทำความสะอาด และประมวลผลล่วงหน้าเพื่อ จัดการกับค่าที่หายไป ค่าผิดปกติ และความไม่สอดคล้องกัน ตรวจสอบให้แน่ใจว่าข้อมูลนั้นเหมาะสำหรับโมเดลการเรียนรู้เชิงลึก รวมถึงการทำให้เป็นมาตรฐานและการเพิ่มหากจำเป็น
- การวิเคราะห์ข้อมูลเชิงสำรวจ (EDA): ทำการแสดงภาพข้อมูลและการวิเคราะห์ทางสถิติเพื่อระบุแนวโน้ม ความสัมพันธ์ และข้อมูลเชิงลึก ปรับแต่งทิศทางของโปรเจ็กต์ตามการค้นพบของ EDA ในขณะเดียวกันก็พิจารณาความเหมาะสมสำหรับสถาปัตยกรรมการเรียนรู้เชิงลึก เช่น CNN, RNN หรือหม้อแปลงไฟฟ้า
- การสร้างโมเดลและการประเมิน: พัฒนาและฝึกโมเดลแมชชีนเลิร์นนิง โดยผสมผสานเทคนิคการเรียนรู้เชิงลึกขั้นสูง เช่น Convolutional Neural Networks (CNN) สำหรับข้อมูลรูปภาพ, Recurrent Neural Networks (RNN) หรือ LSTM สำหรับอนุกรมเวลาหรือข้อมูลลำดับ หรือโมเดลหม้อแปลงสำหรับงาน NLP ประเมินประสิทธิภาพของโมเดลโดยใช้เมตริก เช่น ความแม่นยำ ความแม่นยำ การเรียกคืน หรือ AUC และใช้การปรับแต่งไฮเปอร์พารามิเตอร์เพื่อเพิ่มประสิทธิภาพโมเดลการเรียนรู้เชิงลึก
- การปรับใช้และการนำเสนอ: ปรับใช้โมเดลขั้นสุดท้ายโดยใช้เฟรมเวิร์กเว็บ, API หรือบริการบนคลาวด์ ช่วยให้มั่นใจถึงความสามารถในการปรับขนาดสำหรับโมเดลการเรียนรู้เชิงลึก นำเสนอข้อค้นพบ ประสิทธิภาพของแบบจำลอง และผลกระทบทางธุรกิจหรือในโลกแห่งความเป็นจริงแก่ผู้มีส่วนได้ส่วนเสียในสภาพแวดล้อมแบบมืออาชีพ