Финальный проект
Финальный проект дает вам возможность проверить свои знания учебного курса и вновь приобретенные навыки в динамичной практической среде. Это возможность создать что-то настоящее, продемонстрировать свои технические способности и разработать проект, который станет ключевой частью вашего профессионального портфолио. Это позволяет вам проявить свой творческий потенциал и подчеркнуть, насколько вы изменились за время обучения.
Кроме того, финальный проект призван воспроизвести проблемы, с которыми вы столкнетесь на реальной технической работе, что позволит вам продемонстрировать свои навыки в решении сложных проблем и подготовить вас к ожиданиям вашей будущей карьеры.
- Идентификация проблемы: Выберите реальную проблему, имеющую отношение к вашей отрасли или области интересов. Четко определите масштаб и цели проекта, подчеркнув, как передовые методы глубокого обучения могут улучшить решение.
- Сбор и предварительная обработка данных: Собирайте данные из различных источников, очищайте и предварительно обрабатывайте их для обрабатывать пропущенные значения, выбросы и несоответствия. Убедитесь, что данные подходят для моделей глубокого обучения, включая нормализацию и дополнение, если необходимо.
- Исследовательский анализ данных (EDA): Выполните визуализацию данных и статистический анализ для выявления тенденций, корреляций, и идеи. Уточните направление своего проекта на основе результатов EDA, принимая во внимание пригодность для архитектур глубокого обучения, таких как CNN, RNN или преобразователи.
- Построение и оценка моделей: Разрабатывайте и обучайте модели машинного обучения., включающие передовые методы глубокого обучения, такие как сверточные нейронные сети (CNN) для данных изображений, рекуррентные нейронные сети (RNN) или LSTM для данных временных рядов или последовательностей, а также модели преобразователей для задач НЛП. Оценивайте производительность модели с помощью таких показателей, как точность, точность, полнота или AUC, а также применяйте настройку гиперпараметров для оптимизации моделей глубокого обучения.
- Развертывание и презентация: Разверните окончательную модель с помощью веб-платформ., API или облачные сервисы, обеспечивающие масштабируемость моделей глубокого обучения. Представьте свои выводы, эффективность модели и влияние на бизнес или реальный мир заинтересованным сторонам в профессиональной обстановке.