Data Science & AI Bootcamp

Ismerje meg a Data Science & AI alapvető elméletét és alkalmazását.

Oktatóink felkészítik Önt a tudás és az alkalmazott készségek alapvető alapjaira, hogy jó úton járhasson egy eredményes karrier felé az adattudomány és az AI területén.

Online

Teljes munkaidő: 12 hét

Részmunkaidő: 24 hét

Miért érdemes Data Science-t és AI-t tanulni?

Mi az a Data Science & AI?

Az adattudomány és a mesterséges intelligencia élen jár az innovációban, és az intelligens rendszerek fejlesztésére összpontosít, hogy megoldja az összetett kihívásokat és az adatokat értékes ismeretekké alakítsa át.

Mit nyersz?

Az adattudomány a statisztikai elemzést, a programozást és a tartományi ismereteket egyesíti a trendek megértése és előrejelzése érdekében. Az adattudományi alapok megalapításával az adatokat hasznosítható betekintésekké alakíthatja, amelyek segítenek a vállalkozásoknak megalapozott döntések meghozatalában.

A mesterséges intelligencia viszont lehetővé teszi a számítógépek számára, hogy az emberi intelligencia utánzásával tanuljanak és döntéseket hozzanak. Ez egyre több előrelépéshez vezet a robotika, az önvezető autók és a személyre szabott ajánlások terén. Mivel a vállalkozások az adatokat és az AI-t használják fel a műveletek optimalizálására, az e területek szakértői nélkülözhetetlenek.

Szeretnél karriert kezdeni ezen a nagyon keresett területen?

A Code Labs Academy Data Science Bootcamp segítségével a technológia jövőjének részévé válik, és izgalmas karrierutakat nyit meg a virágzó területen.

Amit meg fogsz tanulni

Egy speciálisan összeállított tananyagon keresztül tanítunk Önnek, amelynek célja, hogy a „csak kíváncsiból” a „teljesen okleveles” adattudományba vezessen, mindössze 12 hét alatt (teljes munkaidőben).

Alapítvány

SQL, Python, Jupyter Notebook, Git és GitHub, Lineáris algebra, Valószínűségek és statisztikák.

Adatelemzés

Adatelemzés, adat-előkészítés, adatvizualizáció és adatfeltárás.

Klasszikus gépi tanulás

Gépi tanulás, felügyelt és felügyelet nélküli tanulás, ML-modell továbbfejlesztés, Naive Bayes, SVM, Random Forests, ML Pipelines és osztályozás.

Mély tanulás

Neurális hálózatok (végrehajtás, hibaelhárítás és optimalizálás), CNN architektúrák, Autoencoder architektúra, adatbővítés, Tensorflow, Keras és Scikit-Learn.

Természetes nyelvi feldolgozás

Szövegkódolás NLP-hez, visszatérő neurális hálózatokhoz (RNN), LSTM-hez, figyelemmechanizmusokhoz, transzformátormodellhez és chatbot-építéshez.

További részletekre van szüksége?

Töltse le a tananyagunkat

Az adattudomány az elmúlt évek egyik legrangosabb pályája volt. Magában foglalja az adatok kezelését, tisztítását, kiértékelését, valamint gépi tanulási modellek fejlesztését az események kimenetelének előrejelzésére. Ebben a fejezetben bemutatjuk az adattudomány alapjait, hogy felkészülhessen a tanulási út megkezdésére.

Bevezetés a Pythonba

  • Python nyelv és történelem
  • A Python alapjai
  • Alapvető adatstruktúrák a Pythonban
  • Osztályok és tárgyak
  • Modulok és csomagok
  • Bemenet kimenet
  • Hibák és Kivételek

Környezetek

  • Python környezetek
  • Anakonda
  • Jupyter notebookok

SQL és adatbázisok

  • Az SQL alapjai
  • SQL lekérdezések

Lineáris algebra

  • Skalárok és Vektorok
  • Mátrixok
  • Normák

Git és GitHub

  • Bevezetés a verzióvezérlésbe
  • Munkafolyamat
  • Adattárak vizsgálata
  • Változások visszavonása
  • Változások lekérése és lehúzása
  • Változások kikényszerítése

Projekt: Curve Fitting

  • Ez a projekt a „Görbeillesztés” probléma megoldásáról szól, amely magában foglalja a legjobb görbeegyenlet megtalálását egy adott adatkészlethez. Ez végigvezeti Önt egy példán erre a problémára, és szakaszokra oszlik, ahol minden szakasz az alapvető fogalmak, például az OOP, SQL, lineáris algebra és a gépi tanulás utolsó munkafolyamatának használatát fogja gyakorolni.

Amire szüksége lesz

Nincs szükség előzetes számítástechnikai vagy programozói végzettségre, hogy csatlakozhasson bootcamp-ünkhöz. Feltételezzük, hogy nincs előzetes tudás, és az első hetekben végigvezetjük az alapokon, biztosítva, hogy az alapoktól kezdve erős alapot építs fel. Akár új a területen, akár karrierváltásra vágyik, programunkat úgy alakítottuk ki, hogy gyorsan és magabiztosan haladjon.

Végső Projekt

A záró projekt lehetőséget ad arra, hogy próbára tegye a bootcamp tudását és újonnan megszerzett készségeit egy dinamikus, gyakorlati környezetben. Ez egy lehetőség arra, hogy valami igazit alkoss, bemutasd technikai képességeidet, és olyan projektet dolgozz ki, amely a szakmai portfóliójának kulcsfontosságú része lesz. Lehetővé teszi, hogy kifejezze kreativitását, és kiemelje, mennyit fejlődött a bootcamp élménye során.

Ezenkívül a végső projekt célja, hogy megismételje azokat a kihívásokat, amelyekkel valódi műszaki munka során találkozik, lehetővé téve Önnek, hogy bemutassa készségeit az összetett problémák megoldásában, és felkészítse Önt jövőbeli karrierje elvárásaira.

  • Probléma azonosítása: Válasszon ki egy valós problémát, amely releváns iparága vagy érdeklődési köre szempontjából. Világosan határozza meg a projekt hatókörét és céljait, kiemelve, hogy a fejlett mély tanulási technikák hogyan javíthatják a megoldást.
  • Adatgyűjtés és előfeldolgozás: Gyűjtsön össze adatokat különböző forrásokból, tisztítsa meg és előfeldolgozza azokat kezelni a hiányzó értékeket, a kiugró értékeket és az inkonzisztenciákat. Győződjön meg arról, hogy az adatok alkalmasak a mély tanulási modellekhez, beleértve a normalizálást és szükség esetén a kiegészítést.
  • Feltáró adatelemzés (EDA): Végezze el az adatok megjelenítését és statisztikai elemzését a trendek, összefüggések, és belátások. Finomítsa a projekt irányát az EDA megállapításai alapján, miközben mérlegeli a mélytanulási architektúrák, például a CNN-ek, az RNN-ek vagy a transzformátorok alkalmasságát.
  • Modellépítés és -értékelés: Gépi tanulási modellek fejlesztése és betanítása, amely olyan fejlett mély tanulási technikákat foglal magában, mint a konvolúciós neurális hálózatok (CNN-ek) a képadatokhoz, az ismétlődő neurális hálózatok (RNN-ek) vagy az LSTM-ek az idősorokhoz vagy sorozatadatokhoz, vagy transzformátormodellek az NLP-feladatokhoz. Értékelje a modell teljesítményét olyan metrikák segítségével, mint a pontosság, precizitás, visszahívás vagy AUC, és alkalmazzon hiperparaméter-hangolást a mély tanulási modellek optimalizálásához.
  • Bevezetés és bemutatás: Telepítse a végső modellt webes keretrendszerek segítségével., API-k vagy felhőalapú szolgáltatások, amelyek méretezhetőséget biztosítanak a mély tanulási modellekhez. Professzionális keretek között mutassa be megállapításait, a modell teljesítményét, valamint üzleti vagy valós hatását az érdekelt feleknek.

Miért Tanuljon Velünk?

  • Gyors tempójú.
  • Kis osztálylétszámok.
  • Az 1:1 arányú karrier coaching egyénileg megfelel az Ön tapasztalatainak és céljainak.
  • Távoli tanulás, a világ bármely pontjáról.
Code Labs Academy Services

Tanulási Közösség

Workeer

9.9/10

Net Promoter pontszám*

Workeer

5/5

tanári tudás*

Workeer

5/5

Iparági vonatkozás*

Közelgő Bootcamps

Hamarosan indul a nyílt adattudományi kurzus kohorsza. További információért válassza ki a kívánt dátumot és campus típusát.

Tandíj és finanszírozás

Finanszírozzon önállóan, vagy válassza ki partnereink közül az Ön számára legmegfelelőbbet.

Gyakran Ismételt Kérdések

Mi az a Data Science and AI bootcamp?
Meddig tart a bootcamp?
Szükségem van adattudományi és mesterséges intelligencia területén szerzett korábbi tapasztalatra?
Milyen eszközökre és szoftverekre lesz szükségem?
A bootcamp saját tempójú vagy élő?
Mennyi időt kell szánnom a bootcampre hetente?
Mennyibe kerül a bootcamp?
Kapok igazolást a bootcamp végén?
Van-e munkahelyi támogatás a bootcamp után?
Milyen állásokat kaphatok a bootcamp elvégzése után?
Kivel beszélhetek, ha további kérdéseim vannak?

Van még kérdése?

Ha további kérdései vannak, írjon nekünk e-mailt a hello@codelabsacademy.com vagy a egyeztessen hívást egyik tanulási szakértőnkkel. Szívesen adunk további információkat, és válaszolunk a bootcamppel vagy a jelentkezési folyamattal kapcsolatos konkrét kérdéseire.

Hogyan kell alkalmazni

Tudjuk, hogy nehéz feladat lehet a pedagógus kiválasztása. Ezért minden potenciális résztvevőnket mihamarabb kapcsolatba hozunk egy emberrel, és Ön velük lesz mindaddig, amíg el nem kezdi a tanfolyamot.

1

Nyújtsa be jelentkezését

Ön választja ki a kurzusát, a campusát és a tanulási ütemtervet, jelezve motivációját, hogy velünk tanuljon.

2

Találkozó a tanulási szakértővel

Foglalja le találkozóját egyik tanulási szakértőnkkel, hogy megbizonyosodjon arról, hogy mi vagyunk a megfelelőek az Ön számára, és tisztázza az esetleges kérdéseket vagy aggályait. Itt beszélhetünk a finanszírozási lehetőségekről, az akciókról és az esetleges szállásokról is.

3

Bevezetés és előmunka

A regisztráció után felvesszük veled a kapcsolatot a kurzusoktatóival és a kohorsztársaiddal. Ezenkívül beállítunk néhány kurzus előtti tanulmányt is, hogy megbizonyosodjunk arról, hogy az első naptól kezdődően elindulhat velünk.

Forduljon egy oktatási szakértőhöz

Gyors kérdés a jelentkezés előtt? Valami egy adott kurzussal kapcsolatban felkeltette a figyelmét, és szeretne többet megtudni? Tudasd velünk. Szívesen segítünk.


Olvassa el a legújabb cikkeket blogunkon

Állásstatisztika

2024-ben körülbelül 1,7 millió nyitott technológiai pozíció van világszerte

Az USA

  • Az Egyesült Államokban az aktív technológiai álláshirdetések becsült száma 438 000 (Forrás)
  • A CompTIA 2024-es műszaki munkaerő-jelentés az Egyesült Államok Munkaügyi Statisztikai Hivatala által gyűjtött adatok elemzése alapján arra számít, hogy 2022-től a technológiai munkaerő kétszer olyan gyorsan fog növekedni, mint a teljes amerikai munkaerő. Ez nagyjából 350 000 új technológiai munkahelyet jelent évente, amelyek megfelelnek a csereigényeknek és az ipar bővülésének. (Forrás)

Európa

  • Tech Jobs Európában, a szám 960 000-re tehető
  • Az információs és kommunikációs technológiai (IKT) szakemberek száma Európában az elmúlt két évtizedben körülbelül 75 százalékkal nőtt, mivel a digitális technológiák és szolgáltatások az európai gazdaság fontosabb részévé váltak. (Forrás)
  • 2021-től csaknem kilencmillió ember dolgozik közvetlenül IKT-szakértőként a szakszervezetben, Németországból több mint kétmillió, Franciaország pedig 1,25 milliót. Az IKT-ipar további kiemelkedő országai közé tartozik Olaszország, Spanyolország, Hollandia, Lengyelország és Svédország. (Forrás)
  • Az összes műszaki álláshirdetés 54%-a 0–2 éves munkatapasztalattal rendelkező jelölteket keresett. Az álláshirdetések földrajzilag igen szétszórtak voltak, a legnagyobb számban Németországban (639 278), Lengyelországban (450 391) és Franciaországban (280 681) voltak jelen. (Forrás)
  • A CompTIA 2024-es műszaki munkaerő-jelentés az Egyesült Államok Munkaügyi Statisztikai Hivatala által gyűjtött adatok elemzése alapján arra számít, hogy 2022-től a technológiai munkaerő kétszer olyan gyorsan fog növekedni, mint a teljes amerikai munkaerő. Ez nagyjából 350 000 új technológiai munkahelyet jelent évente, amelyek megfelelnek a csereigényeknek és az ipar bővülésének. (Forrás)

Európai műszaki munkaerő-felvételi trendek

Ez a grafikon a szoftverfejlesztői szerepkörök iránti lényegesen nagyobb keresletet mutatja más technológiai kategóriákhoz képest, a második legkeresettebb kategória pedig a rendszerelemzés és a kiberbiztonság.

  • 0-2 év tapasztalat: az állások 35%-a
  • 3-10 év tapasztalat: a meghirdetett állások 10%-a
  • 11 év feletti tapasztalat: a meghirdetett állások 13%-a
  • Nincs megadva: a meghirdetett állások 42%-a

A legnagyobb kategória a „Nincs megadva” 42%-kal, ami arra utal, hogy sok álláshirdetésen nincs kifejezetten feltüntetve a szükséges tapasztalat. Azok között, akik ezt teszik, egyértelműen előnyben részesítik a belépő szintű pozíciókat (0-2 év), amelyek a megnyitók 35%-át teszik ki.

Code Labs Academy © 2024 Minden jog fenntartva.