kompromis odchýlky a odchýlky je základný koncept, ktorý nám pomáha pochopiť chybu zovšeobecnenia modelu.
Dekompozícia odchýlky odchýlky
Zaujatosť označuje chybu spôsobenú aproximáciou skutočného problému so zjednodušeným modelom. Predstavuje rozdiel medzi priemernou predpoveďou nášho modelu a správnou hodnotou, ktorú sa snažíme predpovedať. Vysoká odchýlka často vedie k nedostatočnému vybaveniu – príliš zjednodušeným modelom, ktoré nedokážu zachytiť zložitosť údajov.
Variancia na druhej strane meria citlivosť modelu na výkyvy v súbore údajov. Kvantifikuje, ako by sa predpovede modelu líšili, ak by bol trénovaný na rôznych súboroch údajov. Vysoká odchýlka môže viesť k prepracovaniu – modely, ktoré fungujú dobre na tréningových údajoch, ale zle zovšeobecňujú na nové, neviditeľné údaje.
Kompromis a vzťah so zložitosťou modelu
Rozhodujúci je kompromis medzi zaujatosťou a odchýlkou. Ako sa zložitosť modelu zvyšuje, skreslenie zvyčajne klesá (model dokáže zachytiť zložitejšie vzory), ale rozptyl má tendenciu narastať (model sa stáva citlivejším na šum a špecifiká trénovacích údajov). Vyváženie týchto dvoch komponentov je kľúčom k dosiahnutiu optimálneho výkonu modelu.
Príspevok a výpočet chýb
Očakávanú chybu predikcie možno rozložiť na tri časti:
-
Neredukovateľná chyba (šum)
-
Skreslenie na druhú
-
Rozptyl
Matematicky:
Očakávaná chyba = neredukovateľná chyba + odchýlka2+ odchýlka
Priamy výpočet odchýlky a rozptylu môže byť zložitý, najmä pre údaje z reálneho sveta. Techniky ako krížová validácia, krivky učenia alebo použitie rôznych podmnožín množiny údajov na školenie a overenie môžu pomôcť odhadnúť tieto komponenty.
Stratégie na riešenie vysokej odchýlky alebo vysokej odchýlky
-
Vysoká odchýlka: Na zmiernenie vysokej odchýlky je možné zvýšiť zložitosť modelu použitím sofistikovanejších modelov (napr. pridaním ďalších funkcií, použitím neurónových sietí namiesto lineárnych modelov).
-
Vysoká odchýlka: Na riešenie vysokej odchýlky použite techniky ako regularizácia (napr. Lasso, Ridge), zníženie zložitosti modelu (výber funkcií, redukcia rozmerov) alebo zhromažďovanie ďalších údajov môže byť nápomocný.
Zlepšenie prostredníctvom analýzy
Analýzou kompromisu odchýlky a odchýlky môžeme získať prehľad o správaní modelu. Môžeme vybrať primeranú úroveň zložitosti problému, pochopiť, či model nevyhovuje alebo presahuje, a použiť vhodné stratégie na zlepšenie výkonu.
Ak napríklad model vykazuje veľké rozdiely, môžeme zvážiť jeho zjednodušenie znížením počtu prvkov alebo použitím techník regularizácie. Naopak, ak vykazuje vysokú zaujatosť, môže pomôcť použitie zložitejšieho modelu alebo pridanie relevantnejších funkcií.
V konečnom dôsledku je cieľom dosiahnuť rovnováhu medzi skreslením a rozptylom a vytvoriť modely, ktoré dobre zovšeobecňujú na neviditeľné údaje.