ⵜⵓⵛⵛⴹⴰ ⵜⴰⵙⵏⵉⵍⵙⴰⵏⵜ ⵎⴳⴰⵍ Asenqed ⵓⵙⵍⵉⴳ: Isenfaren, Imgaraden, ⴷ Aseqdec

ⵜⴰⴷⴷⴰⴷⴰⵏⵉⵏ
Askasi ⵏ Isefka
Asenqes Uligan
ⵜⵓⵛⵛⴹⴰ ⵜⴰⵙⵏⵉⵍⵙⴰⵏⵜ ⵎⴳⴰⵍ Asenqed ⵓⵙⵍⵉⴳ: Isenfaren, Imgaraden, ⴷ Aseqdec cover image

ⵎⵉ ⴰⵔⴰ ⵜⵜⵡⴰⴼⴻⵔⵏⴻⵏ ⵢⵉⵙⴻⴼⴽⴰ, ⴰⴼⵀⴰⵎ ⵏ ⵜⵖⴰⵡⵙⵉⵡⵉⵏ ⵜⵉⴳⴻⵊⴷⴰⵏⵉⵏ ⵏ ⵜⴻⵙⵏⴰⵜⵡⵉⵍⵜ ⴷ ⴰⵢⴻⵏ ⵢⴻⵙⵄⴰⵏ ⴰⵣⴰⵍ ⴰⵎⴻⵇⵇⵔⴰⵏ ⵉ ⵓⵙⴻⴼⵀⴻⵎ ⵏ ⵢⵉⴳⴻⵎⵎⴰⴹ ⴷ ⵓⵙⵏⴻⴼⵍⵉ ⵏ ⵜⵎⵓⵖⵍⵉⵡⵉⵏ ⵙ ⵜⵖⴰⵡⵍⴰ. ⵙⵉⵏ ⵏ ⵢⵉⵎⴻⴹⵇⴰⵏ ⵢⴻⵜⵜⵡⴰⵙⵇⴻⴷⵛⴻⵏ ⵙ ⵡⴰⵟⴰⵙ ⴷ ⵜⵓⵛⵛⴹⴰ ⵜⴰⵙⵏⵉⵍⵙⴰⵏⵜ ⵏ ⵜⵍⴻⵎⵎⴰⵙⵜ (SEM)ⴰⵙⴻⵏⵇⴻⵙ ⵓⵙⵍⵉⴳ (SD). ⵅⴰⵙ ⴰⴽⴽⴻⵏ ⵉⵎⴻⵙⵍⴰⵢⴻⵏⴰ ⵣⴻⵎⵔⴻⵏ ⴰⴷ ⴷⴱⴰⵏⴻⵏ ⵎⵅⴰⵍⵍⴰⴼⴻⵏ, ⵎⴰⵛⴰ ⵜⵜⴳⴻⵏ ⵉⵙⵡⵉⵢⴻⵏ ⵢⴻⵎⴳⴰⵔⴰⴷⴻⵏ ⴷⴻⴳ ⵓⵙⴻⵍⵎⴻⴷ ⵏ ⵜⴻⵙⵏⵉⵍⴻⵙⵜ. ⵎⴰⴹⵔⵉⵙⴰ ⴰⴷ ⴷⵢⴻⵙⵎⴻⴽⵜⵉ ⴰⵎⴰ ⴷ SEM ⴰⵎⴰ ⴷ SD, ⴰⴷ ⴷⵢⴻⵙⵎⴻⴽⵜⵉ ⵉⵎⴳⴻⵔⵔⴰⴷⴻⵏⵏⵙⴻⵏ, ⴰⴷ ⴷⵢⴻⵎⵎⴻⵙⵍⴰⵢ ⵖⴻⴼ ⵓⵙⴻⵇⴷⴻⵛⵏⵙⴻⵏ ⵙ ⵢⵉⵎⴻⴷⵢⴰⵜⴻⵏ.

ⵜⵓⵛⵛⴹⴰ ⵜⴰⵙⵏⵉⵍⵙⴰⵏⵜ ⵏ ⵜⵍⴻⵎⵎⴰⵙⵜ (SEM)

ⵜⴰⴱⴰⴷⵓⵜ

ⵜⵓⵛⵛⴹⴰ ⵜⴰⵙⵏⵉⵍⵙⴰⵏⵜ ⵏ ⵜⵍⴻⵎⵎⴰⵙⵜ (SEM) ⵜⴻⵜⵜⵇⴰⴷⴰⵔ ⴰⵛⵃⴰⵍ ⵏ ⵜⵍⴻⵎⵎⴰⵙⵜ ⵏ ⵜⵎⵓⵖⵍⵉ (ⵜⴰⵍⴻⵎⵎⴰⵙⵜ) ⵏ ⵢⵉⵡⴻⵜ ⵏ ⵜⵎⴻⵣⴳⵓⵏⵜ ⵏ ⵢⵉⵙⴻⴼⴽⴰ ⴰⵢ ⵉⵣⴻⵎⵔⴻⵏ ⴰⴷ ⵜⴻⴼⴼⴻⵖ ⵙⴻⴳ ⵜⵍⴻⵎⵎⴰⵙⵜ ⵏ ⵢⵉⵎⴻⵣⴷⴰⵖⴻⵏ ⵏ ⵜⵉⴷⴻⵜ. SEM ⵙ ⵍⵙⴰⵙ ⵢⴻⵜⵜⵇⴰⴷⴰⵔ ⴰⵣⴰⵍ ⵏ ⵜⵍⴻⵎⵎⴰⵙⵜ ⵏ ⵜⵎⵓⵖⵍⵉ ⴰⵎ ⵜⵇⵉⴹⵓⵏⵜ ⵏ ⵜⵍⴻⵎⵎⴰⵙⵜ ⵏ ⵢⵉⵎⴻⵣⴷⴰⵖ.

Formula:
Screenshot 2024-10-11 at 4.49.09 PM.png

ⴰⵏⴷⴰ:

  • SD = Asenqed ⵓⵙⵍⵉⴳ ⵏ ⵓⵎⵢⵉⴳ

  • = ⵜⴰⵊⵓⵎⵎⴰ ⵏ ⵓⵎⵢⵉⴳ

SEM ⵢⴻⵜⵜⵏⴻⵔⵏⵉ ⴰⴽⴽⴻⵏ ⵢⴻⵜⵜⵏⴻⵔⵏⵉ ⵍⵇⵉⴷⴰⵔ ⵏ ⵜⵎⵓⵖⵍⵉ, ⴰⵢⴰ ⵢⴻⵙⵙⴽⴰⵏⴰⵢⴷ ⴷⴰⴽⴽⴻⵏ ⵜⵉⵎⵓⵖⵍⵉⵡⵉⵏ ⵜⵉⵎⴻⵇⵔⴰⵏⵉⵏ ⵜⵜⵃⵓⵍⴼⵓⵏⵜ ⴰⴷ ⴷⴼⴽⴻⵏⵜ ⵜⵉⴳⵏⴰⵜⵉⵏ ⵏ ⵜⵎⵓⵖⵍⵉ ⵙ ⵜⵖⴰⵡⵍⴰ ⵓⴳⴰⵔ ⵏ ⵜⵍⴻⵎⵎⴰⵙⵜ ⵏ ⵢⵉⵎⴻⵣⴷⴰⵖⴻⵏ.

ⵜⴰⴼⵙⴻⵔⵜ

  • SEM ⴰⵎⴻⵇⵇⵔⴰⵏ: Yettbeggind ⴰⴼⴻⵔⴷⵉⵙ ⴰⵎⴻⵇⵇⵔⴰⵏ ⴷⴻⴳ ⵓⵙⵏⴻⴼⵍⵉ ⵏ ⵜⵎⵓⵖⵍⵉ ⵏ ⵜⵍⴻⵎⵎⴰⵙⵜ, ⴷⵖⴰ ⴷ ⴰⵢⴰ ⴰⵢ ⴷⵢⴻⵙⵙⵓⵜⵓⵔⴻⵏ ⵜⵉⴳⵏⴰⵜⵉⵏ ⵏ ⵜⵍⴻⵎⵎⴰⵙⵜ ⵏ ⵢⵉⵎⴻⵣⴷⴰⵖ ⵓⵔ ⵏⴻⵙⵄⵉ ⴰⵔⴰ ⴰⵟⴰⵙ ⵏ ⵜⵖⴻⵍⵍⵉⵙⵜ.

  • SEM ⴰⵎⴻⵥⵢⴰⵏ: Yessuturd ⴱⴻⵍⵍⵉ ⵍⵎⵉⵣⴰⵏ ⵏ ⵜⴻⵎⵙⵉⵔⵉⵏ ⴷ ⴰⵇⵉⴹⵓⵏ ⵏ ⵍⵎⵉⵣⴰⵏ ⵏ ⵢⵉⵎⴻⵣⴷⴰⵖ ⵏ ⵜⵉⴷⴻⵜ ⵉ ⴷⵢⴻⵜⵜⵡⴰⵙⴱⴻⴷⴷⴻⵏ ⵙ ⵜⵖⴰⵡⵍⴰ ⵓⴳⴰⵔ.

ⴰⵎⴻⴷⵢⴰ:

ⵖⴻⵔⵔⴷ ⵢⵉⵡⴻⵜ ⵏ ⵜⵎⴻⵣⴳⵓⵏⵜ ⵏ ⵢⵉⵙⴰⵍⵍⴻⵏ ⵏ ⵜⵖⴻⵔⵖⴻⵔⵜ ⵏ 10 ⵏ ⵢⵉⵏⴻⵍⵎⴰⴷⴻⵏ : [170, 165, 160, 175, 180, 155, 168, 172, 169, 174].

ⵜⴰⵣⵡⴰⵔⴰ, ⵃⴻⵙⵙⴱⴻⵏ ⴰⵙⴻⵏⵇⴻⵙ ⵏ ⵜⵎⴻⵏⴹⴰⵡⵜ (SD) ⵙⵢⴻⵏ SEM:

 import numpy as np
    # Sample data
    data = [170, 165, 160, 175, 180, 155, 168, 172, 169, 174]
    # Calculate Standard Deviation (SD)
    sd = np.std(data, ddof=1)  # ddof=1 for sample SD
    # Calculate Standard Error of the Mean (SEM)
    sem = sd / np.sqrt(len(data))
    print(f"Standard Deviation (SD): {sd}")
    print(f"Standard Error of the Mean (SEM): {sem}")

ⴰⴳⵎⵓⴹ ⴰⴷ ⴷⵢⴻⵙⵙⴽⴻⵏ SEM ⵎⴻⵥⵥⵉⵢⴻⵏ ⵙ ⵡⴰⵟⴰⵙ ⵙ ⵜⵎⵓⵖⵍⵉ ⵏ SD, ⴰⵏⴰⵎⴻⴽⵉⵙ ⴷ ⴰⴽⴽⴻⵏ ⵍⵎⵉⵣⴰⵏ ⵏ ⵜⵎⵓⵖⵍⵉ ⴷ ⴰⵇⵉⴹⵓⵏ ⵏ ⵍⵎⵉⵣⴰⵏ ⵏ ⵢⵉⵎⴻⵣⴷⴰⵖ ⵙ ⵍⵎⴻⵄⵇⵓⵍ.

Asenfar ⵏ SEM:

  1. ⴰⵇⵉⴹⵓⵏ ⵏ ⵜⵖⴰⵔⴰ: SEM ⵢⴻⵜⵜⴰⴽⴷ ⴰⵙⴻⵏⵜⴻⵍ ⵏ ⵡⴰⵎⴻⴽ ⵉ ⵜⵉⴷⵢⴻⵙⵎⴻⴽⵜⴰ ⵍⵎⵉⵣⴰⵏ ⵏ ⵜⴻⵎⵙⵉⵔⵉⵏ ⴰⵎ ⵓⵇⵉⴹⵓⵏ ⵏ ⵍⵎⵉⵣⴰⵏ ⵏ ⵢⵉⵎⴻⵣⴷⴰⵖ.

  2. Imukan ⵏ ⵜⴻⴼⵍⴻⵙⵜ: SEM ⵢⴻⵜⵜⵡⴰⵙⴻⵇⴷⴻⵛ ⵉ ⵍⴻⴱⵏⵉ ⵏ ⵢⵉⵎⵓⴽⴰⵏ ⵏ ⵜⴻⴼⵍⴻⵙⵜ ⵖⴻⴼ ⵜⵍⴻⵎⵎⴰⵙⵜ ⵏ ⵜⴻⵎⵙⵉⵔⵉⵏ, ⵢⴻⵜⵜⴰⴽⴷ ⵢⵉⵡⴻⵏ ⵏ ⵓⵙⵡⵉⵔ ⵉⴷⴻⴳ ⵜⵍⴻⵎⵎⴰⵙⵜ ⵏ ⵢⵉⵎⴻⵣⴷⴰⵖ ⵜⴻⵣⵎⴻⵔ ⴰⴷ ⵜⴻⵖⵍⵉ.

  3. Ajerred ⵏ ⵜⴼⴻⵔⴷⵉⵡⵉⵏ: SEM ⵢⴻⵜⵜⵓⵔⴰⵔ ⵜⴰⵎⵍⵉⵍⵜ ⴷ ⵜⴰⵎⴻⵇⵇⵔⴰⵏⵜ ⴷⴻⴳ ⵓⵊⴻⵔⵔⴻⴷ ⵏ ⵜⴼⴻⵔⴷⵉⵡⵉⵏ, ⵢⴻⵜⵜⵄⴰⵡⴰⵏ ⴷⴻⴳ ⵓⵄⴻⵢⵢⴻⵏ ⵎⴰ ⵢⴻⵍⵍⴰ ⵍⵇⵉⴷⴰⵔ ⵏ ⵜⵎⵓⵖⵍⵉ ⵢⴻⵎⴳⴰⵔⴰⴷ ⵙ ⵡⴰⵟⴰⵙ ⵖⴻⴼ ⵍⵇⵉⴷⴰⵔ ⵏ ⵢⵉⵎⴻⵣⴷⴰⵖ.

ⴰⵙⴻⵏⵇⴻⴷ ⴰⵍⵓⴳⴰⵏ (SD)

ⵜⴰⴱⴰⴷⵓⵜ

ⴰⵙⴻⵏⵇⴻⵙ ⵏ ⵜⵎⴻⵏⴹⴰⵡⵜ (SD) ⵢⴻⵜⵜⵇⴰⴷⴰⵔ ⴰⵣⴰⵍ ⵏ ⵓⵎⴳⵉⵔⴻⴷ ⵏⴻⵖ ⵏ ⵜⴼⴻⵔⵇⴻⵜ ⵏ ⵜⵏⴻⵇⴹⵉⵏ ⵏ ⵢⵉⵙⴻⴼⴽⴰ ⵖⴻⴼ ⵜⵍⴻⵎⵎⴰⵙⵜ ⵏ ⵢⵉⵡⴻⵜ ⵏ ⵜⵎⴻⵣⴳⵓⵏⵜ ⵏ ⵢⵉⵙⴻⴼⴽⴰ. ⵢⴻⵜⵜⵇⴰⴷⴰⵔ ⴰⵎⴻⴽ ⵜⵜⵡⴰⴼⴻⵔⵇⴻⵏ ⵡⴰⵣⴰⵍⴻⵏ ⵏ ⵢⴰⵍ ⵢⵉⵡⴻⵏ.

ⵜⴰⵍⵖⴰ:

Screenshot 2024-10-11 at 4.51.10 PM.png

ⴰⵏⴷⴰ:

  • **ⵅ<ⴷⴷⴰⵡ>ⵏⴻⴽⴽ

</ⵙⵓⴱ>** = ⵢⴰⵍ ⵜⴰⵏⵇⵉⴹⵜ ⵏ ⵢⵉⵙⴻⴼⴽⴰ

  • = ⵍⵎⵉⵣⴰⵏ ⵏ ⵜⵎⴻⵣⴳⵓⵏⵜ ⵏ ⵢⵉⵙⴻⴼⴽⴰ

  • = ⴰⵎⴹⴰⵏ ⵏ ⵜⵏⴻⵇⴹⵉⵏ ⵏ ⵢⵉⵙⴻⴼⴽⴰ

ⵜⴰⴼⴻⵙⵙⴰⵙⵜ

  • SD ​​ⵏ ⵜⵍⴻⵎⵎⴰⵙⵜ: Tismektiwin ⵏ ⵢⵉⵙⴻⴼⴽⴰ ⵜⵜⵡⴰⴼⴻⵔⵇⴻⵏⵜ ⵙ ⵡⴰⵟⴰⵙ ⵖⴻⴼ ⵜⵍⴻⵎⵎⴰⵙⵜ, ⴰⵢⴰ ⵢⴻⵙⵙⴽⴰⵏⴰⵢⴷ ⴰⴱⴻⴷⴷⴻⵍ ⴰⵎⴻⵇⵇⵔⴰⵏ.

  • SD ​​ⵏ ⵜⵍⴻⵎⵎⴰⵙⵜ: Tismektiwin ⵏ ⵢⵉⵙⴻⴼⴽⴰ ⵜⵜⵡⴰⴼⴻⵔⵇⴻⵏⵜ ⵙ ⵍⵇⴻⵔⴱ ⵖⴻⴼ ⵜⵍⴻⵎⵎⴰⵙⵜ, ⴰⵢⴰ ⵢⴻⵙⵙⴽⴰⵏⴰⵢⴷ ⴰⴱⴻⴷⴷⴻⵍ ⵏ ⵜⵍⴻⵎⵎⴰⵙⵜ.

ⴰⵎⴻⴷⵢⴰ:

ⵙ ⵓⵙⴻⵇⴷⴻⵛ ⵏ ⵢⵉⵡⴻⵏ ⵏ ⵢⵉⵙⴻⴼⴽⴰ ⵏ ⵜⵖⴻⵔⵖⴻⵔⵜ : [170, 165, 160, 175, 180, 155, 168, 172, 169, 174], SD ⵢⴻⵜⵜⵡⴰⵃⴻⵙⴱⴻⵏ ⵢⴻⵙⵙⴽⴰⵏⴰⵢⴷ ⴰⵥⴻⴹⴹⴰ ⵏ ⵜⵖⴻⵔⵖⴻⵔⵜ ⵏ ⵢⴰⵍ ⵢⵉⵡⴻⵏ ⵏ ⵢⵉⵏⴻⵍⵎⴰⴷⴻⵏ ⵖⴻⴼ ⵜⵍⴻⵎⵎⴰⵙⵜ. ⴷⴻⴳ ⵜⴻⵙⵏⵉⵍⴻⵙⵜ ⵏ ⵓⵙⵎⴻⵍ, SD ⵢⴻⵜⵜⵄⴰⵡⴰⵏ ⴷⴻⴳ ⵓⵙⴽⴰⵙⵉ ⵏ ⵜⵎⵓⵖⵍⵉⵡⵉⵏ ⴷⴻⴳ ⵢⵉⵙⴻⴼⴽⴰ.

Asenfar ⵏ SD:

  1. Asfehm ⵏ Spread: SD ⵢⴻⵜⵜⴰⴽⴷ ⵜⵓⴳⵏⴰ ⵉⴱⴰⵏⴻⵏ ⵏ ⵡⴰⵎⴻⴽ ⵜⵜⴱⴻⴷⴷⵉⵍⴻⵏ ⵡⴰⵣⴰⵍⴻⵏ ⵏ ⵢⵉⵙⴻⴼⴽⴰ ⵙⴻⴳ ⵜⵍⴻⵎⵎⴰⵙⵜ.

  2. Asmel ⵏ Tmuɣli: SD ⵢⴻⵜⵜⴰⴵⴵⴰ ⴰⵙⴻⵎⵔⴻⵙ ⵏ ⵜⵎⵓⵛⵓⵀⴰ ⴳⴰⵔ ⵜⵎⴻⵣⵣⵓⴳⵉⵏ ⵏ ⵢⵉⵙⴻⴼⴽⴰ ⵢⴻⵎⴳⴰⵔⴰⴷⴻⵏ.

  3. ⴰⴼⵀⴰⵎ ⵏ ⵜⴼⴻⵔⴽⵉⵜ: SD ⴷ ⴰⵢⴻⵏ ⵢⴻⵙⵄⴰⵏ ⴰⵣⴰⵍ ⴰⵎⴻⵇⵇⵔⴰⵏ ⴷⴻⴳ ⵓⵙⴽⴰⵙⵉ ⵏ ⵜⴰⵍⵖⴰ ⵏ ⵜⴼⴻⵔⴽⵉⵡⵉⵏ ⵏ ⵢⵉⵙⴻⴼⴽⴰ, ⵍⴰⴷⵖⴰ ⴷⴻⴳ ⵢⵉⵙⴻⴼⴽⴰ ⵢⴻⵜⵜⵡⴰⴼⴻⵔⵇⴻⵏ ⵙ ⵜⵖⴰⵔⴰ, ⴰⵏⴷⴰ 68% ⵏ ⵡⴰⵣⴰⵍⴻⵏ ⵍⵍⴰⵏ ⴷⴻⴳ 1 SD ⵏ ⵜⵍⴻⵎⵎⴰⵙⵜ, 95% ⴷⴻⴳ 2 SD, ⴷ 99,7% ⴷⴻⴳ 3 SD. ⵙⴷ.

Assgerwed ⵏ SEM ⴷ SD

<ⵜⴰⴼⴻⵍⵡⵉⵜ>

<ⵜⵔ>

<ⵜⴷ>ⴰⵙⵡⵉⵔ</ⵜⴷ>

<ⵜⴷ>ⵜⵓⵛⵛⴹⴰ ⵜⴰⵙⵏⵉⵍⵙⴰⵏⵜ ⵏ ⵜⵍⴻⵎⵎⴰⵙⵜ (SEM)</ⵜⴷ>

<ⵜⴷ>Asnefli ⴰⵍⵓⴳⴰⵏ (SD)</ⵜⴷ>

</ⵜⵔ>

<ⵜⵔ>

<ⵜⴷ>ⴰⵙⵏⴰⵙ</ⵜⴷ>

<ⵜⴷ>ⵢⴻⵜⵜⵇⴰⴷⴰⵔ ⴰⵛⵃⴰⵍ ⵏ ⵜⵍⴻⵎⵎⴰⵙⵜ ⵏ ⵜⴻⵎⵙⵉⵔⵉⵏ ⵉ ⴷⵢⴻⴼⴼⵖⴻⵏ ⵙⴻⴳ ⵜⵍⴻⵎⵎⴰⵙⵜ ⵏ ⵢⵉⵎⴻⵣⴷⴰⵖ ⵏ ⵜⵉⴷⴻⵜ.</ⵜⴷ>

<ⵜⴷ>ⵢⴻⵜⵜⵇⴰⴷⴰⵔ ⴰⵥⴻⴹⴹⴰ ⵏ ⵜⵏⴻⵇⴹⵉⵏ ⵏ ⵢⵉⵙⴻⴼⴽⴰ ⵏ ⵢⴰⵍ ⵢⵉⵡⴻⵏ ⵙⴻⴳ ⵜⵍⴻⵎⵎⴰⵙⵜ.</ⵜⴷ>

</ⵜⵔ>

<ⵜⵔ>

<ⵜⴷ>Yettbeggind</ⵜⴷ>

<ⵜⴷ>ⴰⵙⵡⵉⵔ ⵏ ⵜⵍⴻⵎⵎⴰⵙⵜ ⵏ ⵜⴻⵎⵙⵉⵔⵉⵏ ⴰⵎ ⵓⵇⵉⴹⵓⵏ ⵏ ⵜⵍⴻⵎⵎⴰⵙⵜ ⵏ ⵢⵉⵎⴻⵣⴷⴰⵖ.</ⵜⴷ>

<ⵜⴷ>Abeddel ⵏ ⵜⵏⴻⵇⴹⵉⵏ ⵏ ⵢⵉⵙⴻⴼⴽⴰ ⵢⴰⵍ ⵢⵉⵡⴻⵏ ⴷⴻⴳ ⵜⵎⴻⵣⴳⵓⵏⵜ ⵏ ⵢⵉⵙⴻⴼⴽⴰ.</ⵜⴷ>

</ⵜⵔ>

<ⵜⵔ>

<ⵜⴷ>Isenfaren</ⵜⴷ>

<ⵜⴷ>ⴰⵊⴻⵔⵔⴻⴷ ⵏ ⵜⴼⴻⵔⴷⵉⵡⵉⵏ, ⵜⵉⵙⵡⵉⵄⵉⵏ ⵏ ⵜⴻⴼⵍⴻⵙⵜ, ⴰⵇⵉⴹⵓⵏ ⵏ ⵜⵖⴰⵔⴰ ⵏ ⵜⵍⴻⵎⵎⴰⵙⵜ.</ⵜⴷ>

<ⵜⴷ>Asefhem ⵏ ⵓⵎⴳⵉⵔⴻⴷ, ⴰⵙⴻⵎⴳⴻⵔⵔⴰⴷ ⵏ ⵜⵎⴻⵣⵣⵓⴳⵉⵏ ⵏ ⵢⵉⵙⴻⴼⴽⴰ, ⴰⴼⵀⴰⵎ ⵏ ⵜⴼⴻⵔⴽⵉⵡⵉⵏ.</ⵜⴷ>

</ⵜⵔ>

<ⵜⵔ>

<ⵜⴷ>ⵢⴻⵜⵜⵡⴰⵃⴻⵜⵜⴻⵎ ⵙ ⵍⵇⵉⵙ ⵏ ⵜⴻⵎⵙⵉⵔⵉⵏ</ⵜⴷ>

<ⵜⴷ>ⵉⵀ, ⵢⴻⵜⵜⵏⴻⵔⵏⵉ ⵙ ⵜⵎⴻⵔⵏⴰ ⵏ ⵜⴻⵎⵙⵉⵔⵉⵏ.</ⵜⴷ>

<ⵜⴷ>ⴰⵍⴰ, ⵓⵔ ⵢⴻⵜⵜⵡⴰⵃⴰⵣ ⴰⵔⴰ ⵙ ⵍⵇⵉⵙ ⵏ ⵜⴻⵎⵙⵉⵔⵉⵏ.</ⵜⴷ>

</ⵜⵔ>

</ⵜⴰⴼⴻⵍⵡⵉⵜ>

ⵎⴻⵍⵎⵉ ⴰⵔⴰ ⵜⴻⵙⵇⴻⴷⵛⴻⴹ SEM:

  • ⵎⵉ ⴰⵔⴰ ⵜⵉⴷⵏⴻⴼⴽ ⵙ ⵜⵖⴰⵡⵍⴰ ⵙ ⵜⵖⴰⵡⵍⴰ ⵏ ⵜⵎⵓⵖⵍⵉ.

  • ⵉ ⵍⴻⴱⵏⵉ ⵏ ⵜⵎⵉⴹⵔⴰⵏⵜ ⵏ ⵍⴰⵎⴰⵏ.

  • ⴷⴻⴳ ⵜⴰⵍⵍⵉⵜ ⵏ ⵢⵉⴽⴰⵢⴰⴷⴻⵏ ⵏ ⵜⴼⴻⵔⴷⵉⵡⵉⵏ ⴰⵏⴷⴰ ⵜⵜⵡⴰⵃⴻⵜⵜⵎⴻⵏ ⵡⴰⵍⵍⴰⵍⴻⵏ ⵏ ⵜⴻⵎⵙⵉⵔⵉⵏ.

ⵎⴻⵍⵎⵉ ⴰⵔⴰ ⵜⴻⵙⵇⴻⴷⵛⴻⴹ SD:

  • ⴰⴷ ⴷⵢⴻⵙⵎⴻⴽⵜⵉ ⴰⵥⴻⴹⴹⴰ ⵏⴻⵖ ⴰⴱⴻⴷⴷⴻⵍ ⵏ ⵜⵎⴻⵣⴳⵓⵏⵜ ⵏ ⵢⵉⵙⴻⴼⴽⴰ.

  • ⵉ ⵓⵙⵇⴻⵔⴷⴻⵛ ⵏ ⵜⵎⵓⵖⵍⵉⵡⵉⵏ ⴳⴰⵔ ⵜⵎⴻⵣⵣⵓⴳⵉⵏ ⵏ ⵢⵉⵙⴰⵍⴰⵏ.

  • ⴷⴻⴳ ⵓⵙⴽⴰⵙⵉ ⵏ ⵜⴰⵍⵖⴰ ⵏ ⵜⴼⴻⵔⴽⵉⵜ ⵏ ⵢⵉⵙⴻⴼⴽⴰ (ⴰⵎⵣⵓⵏ, ⵍⵇⴰⵏⵓⵏ).

ⴰⵙⴻⴽⵍⴻⵙ

ⴰⵙⴻⵎⵔⴻⵙ ⵏ ⵜⴼⴻⵍⵡⵉⵜ:

ⴰⵙⴻⵇⴷⴻⵛ ⵏ ⵜⴼⴻⵍⵡⵉⵢⵉⵏ ⵢⴻⵣⵎⴻⵔ ⴰⴷ ⵢⴻⵙⵏⴻⵔⵏⵉ ⵜⵉⴼⵔⴰⵜ ⵏ SEM ⴷ SD. ⵜⴰⴼⴻⵍⵡⵉⵜ ⵏ ⵜⴼⴻⵍⵡⵉⵜ ⵉ ⴷⵢⴻⵙⴽⴰⵏⴰⵢⴻⵏ ⴰⵍⵍⴰⵍⴻⵏ ⵙ ⵜⴼⴻⵍⵡⵉⵢⵉⵏ ⵏ ⵜⵓⵛⵛⴹⴰ ⵜⴻⵣⵎⴻⵔ ⴰⴷ ⴷⵜⴻⵙⵙⴽⴻⵏ ⴰⵎⴳⵉⵔⴻⴷ ⴳⴰⵔ SEM ⴷ SD.

  • SEM: Ttgensisd ⵉⴼⴻⵔⴷⵉⵙⴻⵏ ⵏ ⵜⵓⵛⵛⴹⴰ ⴷⴻⴳ ⵜⵍⴻⵎⵎⴰⵙⵜ.

  • SD: Skend ⴰⴱⴻⴷⴷⴻⵍ ⵏⴻⵖ ⴰⵥⴻⴹⴹⴰ ⵏ ⵜⵏⴻⵇⴹⵉⵏ ⵏ ⵢⵉⵙⴻⴼⴽⴰ.

ⴰⵎⴻⴷⵢⴰ:

ⵏⴻⵣⵎⴻⵔ ⴰⴷ ⴷⵏⴻⴱⵏⵓ ⵜⴰⴼⵔⴻⵇⵜ ⵏ ⵜⴼⴻⵍⵡⵉⵜ ⵙ ⵜⵍⴻⵎⵎⴰⵙⵜ ⵢⴻⵔⵏⴰ ⴰⴷ ⴷⵏⴻⵙⵙⴽⴻⵏ ±1 SD ⵙⴻⴳ ⵜⵍⴻⵎⵎⴰⵙⵜ ⴰⵎ ⵡⴰⴽⴽⴻⵏ ⴰⵔⴰ ⴷⵏⴻⵙⵙⴽⴻⵏ ±1 SEM ⵉ ⵓⵙⵎⴻⵏⴹⴻⵡ.

  import numpy as np
    import matplotlib.pyplot as plt
    import scipy.stats as stats

    # Sample data
    mean = 100
    sd = 15  # Standard deviation
    n = 30   # Sample size
    sem = sd / np.sqrt(n)  # Standard error of the mean

    # Generate data for the normal distribution
    x = np.linspace(mean - 4*sd, mean + 4*sd, 100)
    y = stats.norm.pdf(x, mean, sd)

    # Plotting the normal distribution
    plt.plot(x, y, label='Normal Distribution', color='blue')
    # Highlight the mean
    plt.axvline(mean, color='black', linestyle='--', label='Mean')
    # Highlight ±1 SD
    plt.axvspan(mean - sd, mean + sd, alpha=0.2, color='orange', label='±1 SD')
    # Highlight ±1 SEM
    plt.axvspan(mean - sem, mean + sem, alpha=0.2, color='green', label='±1 SEM')

    # Add labels and legend
    plt.title('Normal Distribution with SD and SEM')
    plt.xlabel('Values')
    plt.ylabel('Probability Density')
    plt.legend()

    plt.show()

Figure_1.png

ⵜⴰⵙⴻⴽⵍⴰⴰ ⵜⴻⵙⵙⴽⴰⵏⴰⵢⴷ ⴰⵎⴳⵉⵔⴻⴷ ⴳⴰⵔ SEMSD:

  • SD ⵢⴻⵙⵙⴽⴰⵏⴰⵢⴷ ⴰⵙⴻⵎⵔⴻⵙ ⵏ ⵜⵏⴻⵇⴹⵉⵏ ⵏ ⵢⵉⵙⴻⴼⴽⴰ ⵏ ⵢⴰⵍ ⵢⵉⵡⴻⵏ.

  • SEM ⵢⴻⵙⵙⴽⴰⵏⴰⵢⴷ ⴰⵛⵃⴰⵍ ⵏ ⵜⵍⴻⵎⵎⴰⵙⵜ ⵏ ⵜⵎⵓⵖⵍⵉ ⵢⴻⵜⵜⵡⴰⵕⴵⴰⵏ ⴰⴷ ⵜⴱⴻⴷⴷⴻⵍ ⵎⴰ ⵢⴻⵍⵍⴰ ⵜⴽⴻⵎⵍⴻⴹ ⵜⴰⵎⵓⵖⵍⵉⵉⵏⴻⴽ ⴰⵟⴰⵙ ⵏ ⵜⵉⴽⴽⴰⵍ.

ⵜⴰⴳⴳⴰⵔⴰ

ⴰⵎⴰ ⴷ ⵜⵓⵛⵛⴹⴰ ⵜⴰⵙⵏⵉⵍⵙⴰⵏⵜ ⵏ ⵜⵍⴻⵎⵎⴰⵙⵜ (SEM) ⴰⵎⴰ ⴷ ⴰⵙⴻⵏⵇⴻⵙ ⵓⵙⵍⵉⴳ (SD) ⴷ ⵉⴳⴻⵊⴷⴰⵏⴻⵏ ⴷⴻⴳ ⵓⵙⴻⵍⵎⴻⴷ ⵏ ⵜⴻⵙⵏⵉⵍⴻⵙⵜ, ⴷ ⴰⵛⵓ ⴽⴰⵏ ⵜⵜⵇⴰⴷⴰⵔⴻⵏ ⵉⵙⵡⵉⵢⴻⵏ ⵢⴻⵎⴳⴰⵔⴰⴷⴻⵏ:

  • SEM ⵢⴻⵜⵜⵎⵓⵇⵓⵍ ⴷⴻⴳ ⵜⵖⴰⵔⴰ ⵏ ⵜⵍⴻⵎⵎⴰⵙⵜ ⵏ ⵜⵎⵓⵖⵍⵉ, ⴷⵖⴰ ⴷ ⴰⵢⴰ ⴰⵢ ⵜⵢⴻⴵⴵⴰⵏ ⴰⴷ ⵢⵉⵍⵉ ⴷ ⴰⵢⴻⵏ ⵢⴻⵙⵄⴰⵏ ⴰⵣⴰⵍ ⴷⴻⴳ ⵜⴻⵙⵏⵉⵍⴻⵙⵜ ⵏ ⵓⵙⵏⵓⵍⴼⵓ.

  • SD ⵢⴻⵜⵜⴰⴽⴷ ⵜⴰⵎⵓⵖⵍⵉ ⵖⴻⴼ ⵜⵎⵓⵖⵍⵉ ⵏ ⵜⵎⵓⵖⵍⵉⵡⵉⵏ ⵏ ⵢⵉⵙⴻⴼⴽⴰ, ⴷ ⴰⵢⴻⵏ ⵢⴻⵍⵍⴰⵏ ⴷ ⵍⵙⴰⵙ ⴷⴻⴳ ⵜⴻⵙⵏⵉⵍⴻⵙⵜ ⵏ ⵓⵙⵎⴻⵍ.

ⵙ ⵓⵙⵙⴻⴼⵀⴻⵎ ⵏ ⵜⵖⴰⵡⵙⵉⵡⵉⵏⴰ ⴷ ⵓⵙⵙⵏⴻⵏ ⵏ ⵡⴰⵙⵙ ⴰⵔⴰ ⵜⴻⵏⵜⵜⴻⵙⵇⴻⴷⵛⴻⴹ, ⵜⵣⴻⵎⵔⴻⴹ ⴰⴷ ⵜⴻⵙⵏⴻⵔⵏⵉⴹ ⴰⴹⵔⵉⵙ ⵏ ⵜⴼⴻⵀⵀⵉⵎⵉⵏⵉⴽ ⵏ ⵢⵉⵙⴻⴼⴽⴰ ⴷ ⵜⵎⵓⵖⵍⵉⵡⵉⵏⵉⴽ ⴰⵎⴰ ⴷⴻⴳ ⵓⵏⴰⴷⵉ ⴰⵎⴰ ⴷⴻⴳ ⵓⵙⴻⵍⵎⴻⴷ ⵏ ⵜⵖⴰⵡⵙⵉⵡⵉⵏ.


ⵙⵙⴻⵇⴷⴻⵛ ⵜⴰⵣⵎⴻⵔⵜ ⵏ ⵢⵉⵙⴻⴼⴽⴰ ⵙ Code Labs Academy’s Tussna ⵏ Yisefka & AI Bootcamp.


Career Services background pattern

ⵉⵎⴻⵥⵍⴰ ⵏ ⵜⵎⵓⵙⵏⵉ

Contact Section background image

ⴰⴷ ⵏⴻⵇⵇⵉⵎ ⴷⴻⴳ ⵓⵙⵉⵡⴰⴹ

Code Labs Academy © 2024 ⵉⵣⴻⵔⴼⴰⵏ ⴰⴽⴽ ⵜⵜⵡⴰⵃⴻⵔⵣⴻⵏ.