ⵜⴰⵙⵏⵉⵍⴻⵙⵜ ⵏ ⵓⵙⴻⴽⵍⵓ ⵏ ⵓⴳⵣⴰⵎ
ⴰⵙⵎⴰⵢⵏⵓ ⵅⴼ October 18, 2024 [ⵜ_ⵉ_ⵎ_ⵎ_ⵉ] ⵏⴷⵇⵉⵇⴰ

ⵜⴰⵣⵙⴰⵔⴻⵜ
ⵉⵙⴻⴽⵍⴰ ⵏ ⵜⴻⴳⵏⵉⵜ (DTs) ⴷ ⵜⴰⵔⵔⴰⵢⵜ ⵏ ⵓⵍⵎⴰⴷ ⵢⴻⵜⵜⵡⴰⴹⴻⴼⵔⴻⵏ ⵓⵔ ⵏⴻⵍⵍⵉ ⴰⵔⴰ ⴷ taparametrit ⵢⴻⵜⵜⵡⴰⵙⵇⴻⴷⵛⴻⵏ ⵉ ⵓⵙⵏⵉⵍⴻⵙ ⴷ ⵓⵙⵏⴻⴼⵍⵉ. ⵉⵙⵡⵉ ⴷ ⴰⵙⴻⵏⴼⴰⵔ ⵏ ⵓⵎⴹⴰⵏ ⴰⵔⴰ ⴷⵢⴻⵙⵎⴻⴽⵜⵉⵏ ⴰⵣⴰⵍ ⵏ ⵓⵎⴳⵉⵔⴻⴷ ⵏ ⵢⵉⵙⵡⵉ ⵙ ⵓⵍⵎⴰⴷ ⵏ ⵢⵉⵍⵓⴳⴰⵏ ⵏ ⵜⴻⴳⵏⵉⵜ ⵉⵙⴻⵀⵍⴻⵏ ⵉ ⴷⵢⴻⵜⵜⵡⴰⵙⵏⵓⵍⴼⴰⵏ ⵙⴻⴳ ⵜⵖⴰⵡⵙⵉⵡⵉⵏ ⵏ ⵢⵉⵙⴻⴼⴽⴰ.
ⵜⴰⵏⵜⵔⵓⴱⵉⵜ
ⵉⵙⵡⵉ ⵏ ⵓⵙⵉⵍⴻⵖ ⴷ ⴰⴼⴻⵔⵔⵓ ⵏ ⵜⴼⴻⵔⴽⵉⵡⵉⵏ ⵉⴳⴻⵔⵔⵣⴻⵏ ⴰⴽⴽ ⴷⴻⴳ ⵢⵉⴼⴻⵔⴷⵉⵙⴻⵏ ⴰⴽⴽⴻⵏ ⴰⴷ ⵏⴰⴼ ⴰⵙⴻⴽⵍⵓ ⵉⴳⴻⵔⵔⵣⴻⵏ ⴰⴽⴽ. ⵜⵉⴼⴻⵔⴽⵉⵡⵉⵏ ⵜⵜⵡⴰⵅⴻⴷⵎⴻⵏⵜ ⵙ ⵓⵙⴻⵇⴷⴻⵛ ⵏ ⴽⵔⴰ ⵏ ⵜⵎⵉⵜⴰⵔ ⴰⵎ: Entropy.
ⵍⵍⴰⵏ ⴰⵟⴰⵙ ⵏ ⵢⵉⵙⴻⵏⵜⴰⵍ ⵏ ⵜⵎⴻⵥⵥⵓⵖⵜ ⴰⵎ:
-
Entropie ⵜⵛⵓⴷ ⵖⴻⵔ ⵜⵖⴰⵡⵙⴰ ⵏ ⵢⵉⵙⴰⵍⵍⴻⵏ ⵢⴻⵍⵍⴰⵏ ⴷⴻⴳ ⵢⵉⵡⴻⵏ ⵏ ⵓⵖⴱⴰⵍⵓ ⵏ ⵢⵉⵙⴰⵍⵍⴻⵏ.
-
Entropie ⵏⴻⵣⵎⴻⵔ ⴷⴰⵖⴻⵏ ⴰⴷ ⵜⵜⵏⵡⴰⵍⵉ ⴷ ⴰⴽⴽⴻⵏ ⴷ ⴰⵢⴻⵏ ⵓⵔ ⵏⴻⵙⵄⵉ ⵍⵎⴻⵄⵏⴰ ⵏⴻⵖ ⴷ ⵍⵇⵉⴷⴰⵔ ⵏ ⵓⵙⵡⴻⵀⵎⴻⵏ ⴷⴻⴳ ⵢⵉⵡⴻⵜ ⵏ ⵜⵎⴻⵣⴳⵓⵏⵜ.
-
Entropie ⴷ ⵜⴰⵙⴻⴽⴽⵉⵔⵜ (métrique) ⵉ ⵢⴻⵜⵜⵇⴰⴷⴰⵔⴻⵏ ⵍⴱⴰⵟⴻⵍ ⵏⴻⵖ ⵍⴱⴰⵟⴻⵍ ⵢⴻⵍⵍⴰⵏ ⴷⴻⴳ ⵓⵏⴰⴳⵔⴰⵡ.
ⴷⴻⴳ ⵢⵉⵙⴻⴽⵍⴰ ⵏ ⵜⴻⴳⵏⵉⵜ, ⴰⴷ ⵏⵡⴰⵍⵉ entropie ⴷ ⵍⵇⵉⴷⴰⵔ ⵏ ⵜⴻⵣⴷⴻⴳ ⴷⴰⵅⴻⵍ ⵏ ⵢⵉⵡⴻⵏ ⵏ ⵓⴼⴻⵔⴷⵉⵙ. ⵉⵙⵡⵉ ⵏ ⵍⴻⵎⵜⴻⵍ ⵏ ⵜⵜⴻⴵⵔⴰ ⵏ ⵜⴻⴳⵏⵉⵜ ⴷ ⴰⵙⴻⵏⵇⴻⵙ ⵏ ⵜⵎⴻⵥⵥⵓⵖⵜ ⵏ ⵢⵉⴼⴻⵔⴷⵉⵙⴻⵏ ⴷⴻⴳ ⵢⴰⵍ ⴰⴼⴻⵔⴷⵉⵙ:
ⴰⴽⴽⴰ, ⵏⴻⴱⵖⴰ ⴰⴷ ⵏⴻⵙⵙⴻⵎⵖⴻⵔ ⴰⵎⴳⵉⵔⴻⴷ ⴳⴰⵔ ⵜⵎⴻⵥⵥⵓⵖⵜ ⵏ ⵜⵎⴻⵥⵥⵓⵖⵜ ⵏ ⵜⵎⴻⵟⵟⵓⵜ ⴷ ⵜⵎⴻⵥⵥⵓⵖⵜ ⵏ ⵜⵎⴻⵥⵥⵓⵖⵜ ⵏ ⵜⵎⴻⵟⵟⵓⵜ. ⴰⵎⴳⵉⵔⴻⴷⴰ ⵇⵇⴰⵔⴻⵏⴰⵙ Aswir ⵏ ⵢⵉⵙⴰⵍⵍⴻⵏ.
Entropy ⵖⵀⵖ ⵏ ⵢⵉⵡⴻⵜ ⵏ ⵜⵎⴻⵣⴳⵓⵏⵜ ⵖⵅⵖ ⵜⴻⵜⵜⵡⴰⵙⵏⵓⵍⴼⴰⴷ ⵙ ⵜⵎⴰⴹⵉⵏⵜ ⴰⴽⴽⴻⵏ ⵉ ⴷⵉⵜⴻⴷⴷⵓⵏ:
$$ H(X) = - \sum\limits_{x \in X} p(x) \log p(x) $$
ⴰⵔⴱⴰⵃ ⵏ ⵉⵙⴰⵍⵍⴻⵏ
Information Gain ⴷ ⴰⵎⴳⵉⵔⴻⴷ ⴳⴰⵔ entropie ⵏ ⵜⵎⴻⵥⴷⵉⵜ ⵏ ⵜⵎⴻⵟⵟⵓⵜ ⴷ ⵜⴰⴳⵎⵓⴹⵜ ⵏ ⵜⵎⴻⵥⴷⵉⵜ ⵏ entropies ⵏ ⵜⵎⴻⵥⴷⵉⵢⵉⵏ ⵏ ⵛⵀⵍⵉⴷ, ⴷⵖⴰ ⵙ ⵡⴰⵢⴰ, ⵢⴻⵣⵎⴻⵔ ⴰⴷ ⵢⴻⵜⵜⵡⴰⵙⵏⵓⵍⴼⵓ ⴰⴽⴽⴻⵏ ⵉ ⴷⵉⵜⴻⴷⴷⵓⵏ:
$$IG(Y, X) = H(Y) - \sum_{x \in unique(X)} P(x|X) \times H(Y | X = x)$$
$$= H(Y) - \sum_{x \in unique(X)} \frac{X.count(x)}{len(X)} \times H(Y[X == x])$$
ⴰⵏⴷⴰ:
-
ɣⵀ(.)ⵖ ⴷ ⵜⵎⴻⵥⵥⵓⵖⵜ.
-
ⵖⵢⵖ ⴷ ⵉⵎⴻⵣⴷⴰⵖ ⵓⵇⴱⴻⵍ ⴰⴼⴻⵔⴷⵉⵙ, ⵢⴻⵜⵜⴳⴻⵏⵙⵉⵙⴷ ⴰⴼⴻⵔⴷⵉⵙ ⵏ ⵜⵎⴻⵟⵟⵓⵜ.
-
ⵖⵅⵖ ⴷ ⴰⴱⴻⴷⴷⴻⵍ ⵉ ⵏⴻⴱⵖⴰ ⴰⴷ ⵜⵏⴻⵙⵙⴻⵅⴷⴻⵎ ⵉ ⵜⴼⴻⵔⴽⵉⵜ.
-
ⵖⵅⵖ ⴷ ⴰⵣⴰⵍ ⵓⵏⵏⵉⴳ ⵏ X.
-
ⵖⵢ[ⵅ==x]ⵖ ⴷ ⴰⴹⵔⵉⵙ ⵢⴻⵜⵜⵡⴰⴱⴹⴰⵏ ⵙ ⵡⴰⵣⴰⵍⴻⵏ ⵖⵅⵖ ⴽⴰⵏ.
ⴰⴷ ⵏⴻⵟⵟⴻⴼ ⴰⵎⴻⴷⵢⴰ ⵢⴻⵍⵀⴰⵏ:
ⴰⴷ ⵏⴻⵃⵙⴻⴱ Information Gain ⵎⵉ ⴰⵔⴰ ⵏⴻⴱⴹⵓ ⴰⴼⴻⵔⴷⵉⵙ ⵏ ⵜⵎⴻⵟⵟⵓⵜ ⵙ ⵓⵙⴻⵇⴷⴻⵛ ⵏ ⵡⴰⵣⴰⵍⴻⵏ ⵏ X:
$$IG(parent, X) = H(parent) - \sum_{x \in unique(X)} P(x|X) \times H(parent | X = x)$$
\
ⵜⴰⵣⵡⴰⵔⴰ, ⴰⴷ ⵏⴻⵃⵙⴻⴱ antropi ⵏ ⵓⵖⴻⵔⵙⵉⵡ ⴰⵎⴰⵜⵓ:
$$ H(parent) = - P(Y=Blue) \times \log P(Y=Blue) - P(Y=Yellow) \times \log P(Y=Yellow) $$
$$ = - \frac{11}{21} \times \log(\frac{11}{21}) - \frac{10}{21} \times \log(\frac{10}{21}) = 0.3 $$
\
ⵙⵢⵉⵏ, ⴰⴷ ⵏⴻⵃⵙⴻⴱ ⵜⴰⵣⵎⴻⵔⵜ ⵜⴰⴷⴰⵎⵙⴰⵏⵜ ⵏ ⵢⴰⵍ ⴰⴼⴻⵔⴷⵉⵙ ⵏ ⵢⵉⴳⴻⵔⴷⴰⵏ ⴷⴻⴼⴼⵉⵔ ⵏ ⵜⴼⴻⵔⵇⴻⵏⵜ ⵙ ⵓⵙⴻⵇⴷⴻⵛ ⵏ ⵡⴰⵣⴰⵍⴻⵏ ⵉⵃⴻⵔⵣⴻⵏ ⵏ X:
$$ unique(X) = [Circle, Square] $$
$$ \sum_{x \in unique(X)} P(x|X) \times H(Y | X = x) = P(Square|X) \times H(Y | X = Square) $$
$$ + P(Circle|X) \times H(Y | X = Circle) $$
$$ = \frac{9}{21} \times H(Y | X = Square) + \frac{12}{21} \times H(Y | X = Circle) $$
ⴰⵎ:
-
ⵖⵀ(ⵢ | ⵅ = ⴰⵎⴽⵓⵥ)ⵖ : ⵢⴻⵜⵜⴳⴻⵏⵙⵉⵙⴷ entropi ⵏ ⵜⵎⴻⵥⴷⵉⵜ ⵜⴰⵎⴻⵣⵡⴰⵔⵓⵜ ⵏ ⵜⵎⴻⵟⵟⵓⵜ.
-
ⵖⵀ(ⵢ | ⵅ = ⵜⴰⵖⴻⵛⵜ)ⵖ : ⵢⴻⵜⵜⴳⴻⵏⵙⵉⵙⴷ entropi ⵏ ⵜⵎⴻⵥⴷⵉⵜ ⵜⵉⵙ ⵙⵏⴰⵜ ⵏ ⵜⵎⴻⵟⵟⵓⵜ.
\
ⵏⴻⴱⴷⴰ ⵙ ⵓⵖⴻⵔⵙⵉⵡ ⴰⵎⴻⵣⵡⴰⵔⵓ:
$$ H(Y | X = Square) = - P(Y=Blue | X = Square) \times \log P(Y=Blue| X = Square) $$
$$ - P(Y=Yellow| X = Square) \times \log P(Y=Yellow| X = Square) $$
$$ = - \frac{7}{9} \times \log\frac{7}{9} - \frac{2}{9} \times \log\frac{2}{9} = 0.23 $$
\
ⵓ ⵙⵙⵉⵏ ⴰⴽⵉⵏ, ⴰⵖⴻⵔⵙⵉⵡ ⵡⵉⵙ ⵙⵉⵏ ⵏ ⵡⴰⵔⵔⴰⵛ:
$$ H(Y | X = Circle) = - P(Y=Blue | X = Circle) \times \log P(Y=Blue| X = Circle) $$
$$ - P(Y=Yellow| X = Circle) \times \log P(Y=Yellow| X = Circle) $$
$$ = - \frac{4}{12} \times \log\frac{4}{12} - \frac{8}{12} \times \log\frac{8}{12} = 0.28 $$
\
ⵜⴰⴳⴳⴰⵔⴰ, ⴰⴷ ⵏⴱⴻⴷⴷⴻⵍ entropies ⴷⴻⴳ ⵜⴼⴻⵍⵡⵉⵜ ⵏ ⵓⵙⵏⴻⵔⵏⵉ ⵏ ⵢⵉⵙⴰⵍⴰⵏ:
$$IG(parent, X) = H(parent) - \sum_{x \in unique(X)} P(x|X) \times H(parent | X = x)$$
$$ = 0.3 - \frac{9}{21} \times 0.23 - \frac{12}{21} \times 0.28 = 0.041 $$
\
\
ⴰⴽⴽⴻⵏ ⵉ ⴷⵏⴻⵏⵏⴰ ⵢⴰⴽⴰⵏ, ⵉⵙⵡⵉ ⵏ ⵜⴼⴻⵔⴽⵉⵜ ⵏ ⵜⵎⴻⵥⴷⵉⵢⵉⵏ ⴷ ⴰⵙⴻⵎⵖⴻⵔ ⵏ Information Gain, ⵙ ⵡⴰⵢⴰ, ⴰⴷ ⵏⴻⵙⵙⴻⵎⵖⴻⵔ Entropy ⴷⴻⴳ ⵜⵎⴻⵥⴷⵉⵢⵉⵏ ⵏ ⵢⵉⴳⴻⵔⴷⴰⵏ ⵉ ⴷⵢⴻⵜⵜⵡⴰⵙⵏⵓⵍⴼⴰⵏ. ⵉ ⵡⴰⴽⴽⴻⵏ ⴰⴷ ⵏⴻⵅⴷⴻⵎ ⴰⵢⴰ, ⵢⴻⵙⵙⴻⴼⴽ ⴰⴷ ⵏⴻⵄⵔⴻⴹ ⴰⴷ ⵏⴻⴱⴹⵓ ⴰⴼⴻⵔⴷⵉⵙ ⵙ ⵜⵎⴻⵣⵣⵓⴳⵉⵏ ⵢⴻⵎⴳⴰⵔⴰⴷⴻⵏ ⵏ ⵜⵎⴻⵥⴷⵉⵢⵉⵏ $ X_1, X_2, \ldots, Xn $ ⵢⴻⵔⵏⴰ ⴰⴷ ⵏⴻⵃⵔⴻⵣ ⴽⴰⵏ ⴰⴼⴻⵔⴷⵉⵙ ⵉ ⵢⴻⵙⵙⴻⵎⵖⴰⵔⴻⵏ Asenqes ⵏ Yisalan:
$$ X^{*} = \underset{X_i}{\operatorname{argmax}} IG(Y, X_i) $$
ⵎⴻⵍⵎⵉ ⴰⵔⴰ ⵜⵃⴻⴱⵙⴻⴹ ⴰⴼⴻⵔⵔⴻⵇ
ⵜⴰⴱⴹⵉⵜ ⵏ ⵜⵎⴻⵥⴷⵉⵢⵉⵏ ⴷⴻⴳ ⵢⵉⵙⴻⴽⵍⴰ ⵏ ⵜⴻⴳⵣⵉ ⴷ ⵜⵉⵏ ⵢⴻⵜⵜⵡⴰⵙⵇⴻⴷⵛⴻⵏ, ⵉⵀⵉ ⵢⴻⵙⵙⴻⴼⴽ ⴰⴷ ⵢⵉⵍⵉ ⵢⵉⵡⴻⵏ ⵏ ⵓⵙⵡⵉⵔ (critères) ⵉ ⵏⴻⵣⵎⴻⵔ ⴰⴷ ⵜⵏⴻⵙⵙⴻⵅⴷⴻⵎ ⴰⴽⴽⴻⵏ ⴰⴷ ⵏⴻⵃⴱⴻⵙ ⵜⴰⴱⴹⵉⵜ. ⵡⵉⴳⵉ ⴷ ⴽⵔⴰ ⵙⴻⴳ ⵢⵉⴼⴻⵔⴷⵉⵙⴻⵏ ⵢⴻⵜⵜⵡⴰⵙⵇⴻⴷⵛⴻⵏ ⴰⴽⴽ:
-
ⵎⵉ ⴰⵔⴰ ⵢⵉⵍⵉ ⵓⴼⴻⵔⴷⵉⵙ ⴷ ⴰⵣⴻⴷⴷⵉⴳ: H(ⵜⴼⴻⵔⴽⵉⵜ) = 0. Ur ⵢⴻⵙⵄⵉ ⴰⵔⴰ ⵍⵎⴻⵄⵏⴰ ⴰⴷ ⵜⴱⴻⴹⵏⴻⴹ ⴰⴼⴻⵔⴷⵉⵙ ⵙ ⵡⴰⵟⴰⵙ.
-
ⴰⵎⴹⴰⵏ ⴰⵎⴻⵇⵇⵔⴰⵏ ⵏ ⵜⴻⵍⵇⵉ: ⵏⴻⵣⵎⴻⵔ ⴰⴷ ⵏⴻⵙⵙⴻⴱⴷⴻⴷ ⵜⴻⵍⵇⵉ ⵜⴰⵎⴻⵇⵇⵔⴰⵏⵜ ⵉ ⵢⴻⵣⵎⴻⵔ ⴰⴷ ⵢⴰⵡⴻⴹ ⵓⵎⴹⴰⵏ, ⴰⵏⴰⵎⴻⴽⵉⵙ ⵓⵍⴰ ⵎⴰ ⵢⴻⵍⵍⴰ ⵓⵔ ⵢⴻⵍⵍⵉ ⴰⵔⴰ ⴷ ⴰⵣⴻⴷⴷⵉⴳ ⵓⴼⴻⵔⴷⵉⵙ ⵢⴻⵜⵜⵡⴰⵃⴱⴻⵙ.
-
ⴰⵎⴹⴰⵏ ⴰⵎⴻⵥⵢⴰⵏ ⵏ ⵜⵎⵓⵖⵍⵉⵡⵉⵏ ⵉ ⵢⴰⵍ ⴰⴼⴻⵔⴷⵉⵙ: ⵏⴻⵣⵎⴻⵔ ⴷⴰⵖⴻⵏ ⴰⴷ ⵏⴻⵙⵙⴻⴱⴷⴻⴷ ⴰⵎⴹⴰⵏ ⴰⵎⴻⵥⵢⴰⵏ ⵖⵏⵖ ⵏ ⵜⵎⵓⵖⵍⵉⵡⵉⵏ ⵉ ⵢⴰⵍ ⴰⴼⴻⵔⴷⵉⵙ. ⵎⴰ ⵢⴻⵍⵍⴰ ⴰⵎⴹⴰⵏ ⵏ ⵜⵎⵓⵖⵍⵉⵡⵉⵏ ⴷⴻⴳ ⵢⴰⵍ ⴰⴼⴻⵔⴷⵉⵙ ⴷ ⵖⵏⵖ ⵉⵀⵉ ⴰⴷ ⵏⴻⵃⴱⴻⵙ ⴰⴼⴻⵔⴷⵉⵙ ⵓⵍⴰ ⵎⴰ ⴰⴼⴻⵔⴷⵉⵙ ⵓⵔ ⵢⴻⵍⵍⵉ ⴰⵔⴰ ⴷ ⴰⵣⴻⴷⴷⵉⴳ.
ⴰⵔ ⵜⴰⴳⴳⴰⵔⴰ ⵏ ⵓⵙⵙⵉⵍⴻⵖ ( ⴰⴼⴻⵔⴷⵉⵙ ), ⵢⴰⵍ ⴰⴼⴻⵔⴷⵉⵙ ⵢⴻⵜⵜⴽⴻⵍⴼⴻⵏ ⵙ ⵜⴰⴳⴳⴰⵔⴰ ⵏ ⵓⵙⴻⴽⵍⵓ ⵏ ⵜⴻⴳⵏⵉⵜ ⵇⵇⴰⵔⴻⵏⴰⵙ “Aferdis”, ⴰⵛⴽⵓ ⵓⵔ ⵢⴻⵍⵍⵉ ⴰⵔⴰ ⴷ ⴰⵥⴰⵔ ⵏ ⴽⵔⴰ ⵏ ⵓⵙⴻⴽⵍⵓ ⵏ ⵜⴼⴻⵍⵡⵉⵜ. ⵢⴰⵍ ⴰⴼⴻⵔⴷⵉⵙ ⴰⴷ ⴷⵢⴻⵙⵎⴻⴽⵜⵉ ⵍⵖⴻⵍⵍⴰ ⵏ ⵜⵎⴻⵣⴳⵓⵏⵜ ⵙ ⵡⴰⵟⴰⵙ ⵏ ⵜⵎⵓⵖⵍⵉⵡⵉⵏ.
ⵜⴰⴳⴳⴰⵔⴰ
ⴰⵙⴻⴽⵍⵓ ⵏ ⵜⴻⴳⵏⵉⵜ ⴷ ⵢⵉⵡⴻⵏ ⵙⴻⴳ ⵢⵉⵍⵓⴳⴰⵏ ⵏ ⵓⵍⵎⴰⴷ ⵏ ⵜⵎⴰⵛⵉⵏⵉⵏ ⵢⴻⵜⵜⵡⴰⵙⵙⵏⴻⵏ ⴰⵟⴰⵙ ⵙ ⵍⴵⴻⵀⴷⵉⵙ, ⵍⴱⴰⴹⵏⴰⵉⵏⴻⵙ ⵏ ⵜⵎⵓⵙⵙⵏⵉ ⴷ ⵓⵙⵏⴻⴼⵍⵉⵉⵏⴻⵙ ⴰⴼⵔⴰⵔⴰⵢ. Algorithmea ⵢⴻⵣⵎⴻⵔ ⴰⴷ ⵢⴻⵜⵜⵡⴰⵙⴻⵇⴷⴻⵛ ⵓⴳⴰⵔ ⵙ ⵢⵉⵎⵓⴹⴰⵏ ⵉⵍⴻⵍⵍⵉⵢⴻⵏ ⵏ ⵓⵎⴹⴰⵏ ( Gaussian Decision Tree ), ⵢⴻⵔⵏⴰ ⵢⴻⵣⵎⴻⵔ ⴰⴷ ⵢⴻⵜⵜⵡⴰⵙⵏⴻⵔⵏⵉ ⴰⴽⴽⴻⵏ ⴰⴷ ⵢⴻⴼⵔⵓ ⵍⴻⵛⵖⴰⵍ ⵏ ⵜⴳⴻⵔⵎⴰⵏⵜ ⴷⴰⵖⴻⵏ.